珂朵莉的值域连续段

  1. 4 5   
  2. 1 4 9   
  3. 4 3 8   
  4. 1 2 5   
  5. 2 4 6   
  6. 1 3 7

这里用u、v和w三个数组用来记录每条边的具体信息,即u[i]、v[i]和w[i]表示第i条边是从第u[i]号顶点到v[i]号顶点(u[i]àv[i]),且权值为w[i]。

再用一个first数组来存储每个顶点其中一条边的编号,fisrt[i]表示与顶点i相连最后一个点的边的编号,(first[4]=2,就是4号顶点有条边,编号为2)

next[i]存储的是“编号为i的边”的“前一条边”的编号。

//初始化first数组下标1~n的值为-1,表示1~n顶点暂时都没有边   
for(i=1;i<=n;i++)   
    first[i]=-1;   
for(i=1;i<=m;i++)   
{   
    scanf("%d %d %d",&u[i],&v[i],&w[i]);//读入每一条边   
    //下面两句是关键啦   
    next[i]=first[u[i]];   
    first[u[i]]=i;   

题目描述

珂朵莉给你一个有根树,求有多少个子树满足其内部节点编号在值域上连续

一些数在值域上连续的意思即其在值域上构成一个连续的区间

较好邻接表数组解析

输入描述:

第一行有一个整数n,表示树的节点数。
接下来n–1行,每行两个整数x,y,表示存在一条从x到y的有向边。
输入保证是一棵有根树。

输出描述:

输出一个数表示答案
示例1

输入

5
2 3
2 1
2 4
4 5

输出

5

说明

节点1子树中编号为1,值域连续
节点3子树中编号为3,值域连续
节点5子树中编号为5,值域连续
节点4子树中编号为4,5,值域连续
节点2子树中编号为1,2,3,4,5,值域连续

备注:

对于100%的数据,有n <=100000
#include <bits/stdc++.h>
using namespace std;
 
const int maxn = 200000 + 10;
int n;
int h[maxn], to[maxn], nx[maxn], cnt;
int mn[maxn], mx[maxn], sz[maxn], in[maxn];
 
void add(int u, int v) {
  to[cnt] = v;
  nx[cnt] = h[u];
  h[u] = cnt ++;
}
 
void dfs(int x) {
  sz[x] = 1;
  mn[x] = x;
  mx[x] = x;
  for(int i = h[x]; i != -1; i = nx[i]) {
    dfs(to[i]);
    sz[x] += sz[to[i]];
    mn[x] = min(mn[x], mn[to[i]]);
    mx[x] = max(mx[x], mx[to[i]]);
  }
}
 
int main() {
  scanf("%d", &n);
  for(int i = 1; i <= n; i ++) {
    h[i] = -1;
    in[i] = 0;
  }
  cnt = 0;
  for(int i = 1; i < n; i ++) {
    int u, v;
    scanf("%d%d", &u, &v);
    add(u, v);
    in[v] ++;
  }
  for(int i = 1; i <= n; i ++) {
    if(in[i] == 0) {
      dfs(i);
    }
  }
  int ans = 0;
  for(int i = 1; i <= n; i ++) {
    if(mx[i] - mn[i] + 1 == sz[i]) ans ++;
  }
  printf("%d\n", ans);
  return 0;
}


阅读更多

没有更多推荐了,返回首页