RabbitMQ (有几种消息模式自己去看,这里不做解释)1. 使用RabbitMQ的一些经验
1. consume时预取参数的大小对consume性能影响很大,具体可参见官方博客;
2. 队列HA的代价非常高,特别是对带宽的占用,有限制的使用HA,且只提供两备份即可;
3. 磁盘也可能形成瓶颈,如果单台机器队列很多,确认只在必要时才使用duration,避免把磁盘跑满;
4. 队列的消息大量累积后,发送和消费速度都会受到影响,导致服务进一步恶化,采用的方法是,额外的脚本监控每个队列的消息数,超过限额会执行purge操作,简单粗暴但是有效的保证了服务稳定;
5. 限制单条消息大小,我们的限制是128k,消息队列只走消息,其他交由存储去做;
6. 用iptables适当的限制连接;
2. RabbitMQ队列超长导致QueueingConsumerJVM溢出
我们的服务器使用RabbitMQ作为消息中转的容器,一般RabbitMQ进程占用内存不过100M-200M,这些队列超长的RabbitMQ进程可以占用超过2G的内存。
显然消息队列的消费者出现了问题。开发查看日志发现作为该队列消费者的Java服务的日志也卡住了,重启服务后(这点做得不对,应该用jstat、jstack进行排查,而不是直接重启)又很快卡住。
通过jstat发现JVM内存都耗尽了,之后进入无尽的Full GC,所以当然不会处理队列消息和输出日志信息了。
使用jmap导出这时候的Java堆栈,命令:jmap -dump:format=b,file=29389.hprof 29389。将得到的dump文件放到MAT(Eclipse Memory Analyzer)里进行分析,发现很明显是QueueingConsumer持有大量对象导致JVM内存溢出
解决方案将basicQos设置为16后重启服务,队列终于开始消化了。用jstat 观察JVM内存使用情况,也没有再出现剧增溢出的现象。
总结:使用RabbitMQ的时候,一定要合理地设置QoS参数。RabbitMQ的默认做法其实是很脆弱的,容易导致雪崩。
3. RabbitMQ数据速率问题
在边读边写的情况下:速率只与网络带宽正相关,网络使用率最高能达到接近100%,并且数据使用率很高(90%以上)。
在千兆网下,以500KB一条数据为例,读写速率均能达到200条/s,约为100MB/s。
在只写不读的情况下:写入速率瓶颈在于硬盘写入速度。
4. RabbitMQ数据存储路径变更到D盘方法
Windows环境下,在安装前设置环境变量:RABBITMQ_BASE=D:\RabbitMQ_Data
5. RabbitMQ磁盘写满重启后数据丢失问题
表现:磁盘写满后发送、读取程序均不能连接服务。
解决方法:将Queue、Exchange设置为Durable即不会发生数据丢失问题。
通过a.关闭服务;b.删除占位文件、erl_crash.dump;c.重启服务 三步操作后,磁盘会清理出10M左右空间,此时读取数据程序便可正常工作。
正确设计的架构,应确保RabbitMQ不会发生磁盘写满崩溃的情况。

本文分享了使用RabbitMQ过程中遇到的若干问题,包括队列超长导致的JVM溢出、数据速率问题、数据存储路径调整、磁盘满导致的数据丢失,以及RabbitMQ集群和常用命令的应用。同时探讨了RabbitMQ在工作场景中的应用。
最低0.47元/天 解锁文章
3255

被折叠的 条评论
为什么被折叠?



