Scanpy(3)单细胞数据分析常规流程 面对高效快速的要求上,使用R分析数据越来越困难,转战Python分析,我们通过scanpy官网去学习如何分析单细胞下游常规分析。数据3k PBMC来自健康的志愿者,可从10x Genomics免费获得。在linux系统上,可以取消注释并运行以下操作来下载和解压缩数据。最后一行创建一个用于保存已处理数据的目录write,后面直接使用保存的数据,能快速加载数据。
Python 调试更好的方式 在本文中,我介绍了一个很棒的 Python 第三方库,名为"Ice Cream"。它增强了Python 的普通print() 函数,并提供了详细的输出。因此,它使调试变得非常方便。Ice Cream库永远不会取代print() 函数,因为它是为调试目的而设计的。同时,它也不会取代日志系统。
损失函数中的均方误差以及平方误差 机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测期望结果表现的指标。寻找函数最小值的最常用方法是“梯度下降”。把损失函数想象成起伏的山脉,梯度下降就像从山顶滑下,目的是到达山脉的最低点。损失函数可以大致分为两类:分类损失(Classification Loss)和回归损失(Regression Loss)。下面这篇博文,就将重点介绍5种回归损失。
数据+代码】LightGBM+Optuna实现回归分析 我们可以看到,LightGBM在RMSE和R2方面表现非常好,RMSE为2065.31,R2为96.68%,而线性回归的RMSE为4602.43$,R2为83.51%。此外,该图表明,与配备自动或半自动变速器的汽车相比,配备手动变速器的汽车的价格范围更窄,后者的价格范围更大。里程数:平均数约为2.5万,由于存在一个32.3万英里的异常值(这个数字太高了),我们将删除这个离群值,以获得一个更准确的数据表示。为了分析数据中的数值特征,我们将首先定义一个函数,绘制所有数字特征的分布直方图和箱线图。
跳过开屏广告 虽然 APP 被迫下架这事令人神伤,但大家其实完全没必要为再没有同类 APP 可用这事担心首先就是这类 APP 都是依靠安卓系统的无障碍服务,在 APP 启动时模拟人工点击跳过按钮来实现自动跳过开屏广告,实际都是无需联网即可使用的只不过因为每个 APP 的广告关闭按钮位置都不相同,联网权限只是作者为了给你更新不同 APP 的对应规则简单来说,**就是虽然在应用市场被下架了,但完全不影响 APP 的继续使用!**尽管作者以后都不会再更新规则了,但你完全可以自行添加规则继续使用。
2021 年年度最佳开源软件 与Git类似,LakeFS 的数据中会带有提交记录、元数据字段和回滚等信息,此外还有hooks,即在分支合并到主分支前,hooks会检查数据,确保完整性和质量。StreamNative 将 Apache Pulsar 分布式流处理架构与 Kubernetes 和混合云支持等,以及企业级功能、大型数据、认证和授权、性能监控等工具相结合,既简化了应用程序的开发,又简化了流数据应用的部署和管理。Orange 包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。