最短路径是图论中一个很经典的问题:给定图G(V,E),求一条从起点到终点的路径,使的这条路径上经过的所有边的边权之和最小。
1.Dijkstra算法
Dijkstra算法(迪杰斯特拉)用来解决单源最短路径问题,即给定图G和起点s,通过算法得到s到达其他顶点的最短距离。Dijkstra的基本思想是对图G(V,E)设置集合S,存放已被访问的顶点,然后每次从集合V-S中选择与起点s的最短距离最小的一个顶点(记为u),访问并加入集合S,之后,令顶点u为中介点,优化起点s与所有从u能到达的顶点v之间的最短距离,这样的操作执行n次(n为顶点个数),直到集合S已包含所有顶点。
Dijsktra算法的策略是:
设置集合S存放已被访问的顶点(即已攻占的城市),然后执行n次下面的两个步骤(n为顶点个数):
(1)每次从集合V-S(即未攻占的城市)中选择与起点s的最短距离最小的一个顶点(记为u),访问并加入集合S(即令其已被攻占)。
(2)之后,令顶点u为中介点,优化起点s与所有从u能到达的顶点v之间的最短距离。
Dijkstra算法的具体实现:
(1)集合S可以用一个bool数组vis[]来实现,即当vis[i]==true时表示顶点Vi已被访问,当vis[i]==false时表示顶点Vi未被访问。
(2)令int型数组d[]表示起点s到达顶点Vi的最短距离,初始时除了起点s的d[s]赋为0,其余顶点都赋为一个很大的数,来表示inf,即不可达。
伪代码如下:
本文介绍了图论中的最短路径问题,重点讲解了Dijkstra算法和Floyd算法。Dijkstra算法用于单源最短路径,通过不断优化起点到未访问顶点的最短距离来寻找路径。Floyd算法则解决全源最短路径,通过迭代检查所有可能的中介点来更新最短路径。
最低0.47元/天 解锁文章
1022

被折叠的 条评论
为什么被折叠?



