数据结构之——最短路径(Dijkstra算法和Floyd算法)

本文介绍了图论中的最短路径问题,重点讲解了Dijkstra算法和Floyd算法。Dijkstra算法用于单源最短路径,通过不断优化起点到未访问顶点的最短距离来寻找路径。Floyd算法则解决全源最短路径,通过迭代检查所有可能的中介点来更新最短路径。
摘要由CSDN通过智能技术生成

最短路径是图论中一个很经典的问题:给定图G(V,E),求一条从起点到终点的路径,使的这条路径上经过的所有边的边权之和最小。

1.Dijkstra算法

Dijkstra算法(迪杰斯特拉)用来解决单源最短路径问题,即给定图G和起点s,通过算法得到s到达其他顶点的最短距离。Dijkstra的基本思想是对图G(V,E)设置集合S,存放已被访问的顶点,然后每次从集合V-S中选择与起点s的最短距离最小的一个顶点(记为u),访问并加入集合S,之后,令顶点u为中介点,优化起点s与所有从u能到达的顶点v之间的最短距离,这样的操作执行n次(n为顶点个数),直到集合S已包含所有顶点。

Dijsktra算法的策略是:
设置集合S存放已被访问的顶点(即已攻占的城市),然后执行n次下面的两个步骤(n为顶点个数):
(1)每次从集合V-S(即未攻占的城市)中选择与起点s的最短距离最小的一个顶点(记为u),访问并加入集合S(即令其已被攻占)。
(2)之后,令顶点u为中介点,优化起点s与所有从u能到达的顶点v之间的最短距离。

Dijkstra算法的具体实现:
(1)集合S可以用一个bool数组vis[]来实现,即当vis[i]==true时表示顶点Vi已被访问,当vis[i]==false时表示顶点Vi未被访问。
(2)令int型数组d[]表示起点s到达顶点Vi的最短距离,初始时除了起点s的d[s]赋为0,其余顶点都赋为一个很大的数,来表示inf,即不可达。

伪代码如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值