# poj-2262 Goldbach's Conjecture

Goldbach's Conjecture
 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 28046 Accepted: 10797

Description

In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture:
Every even number greater than 4 can be
written as the sum of two odd prime numbers.

For example:
8 = 3 + 5. Both 3 and 5 are odd prime numbers.
20 = 3 + 17 = 7 + 13.
42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.)
Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million.

Input

The input will contain one or more test cases.
Each test case consists of one even integer n with 6 <= n < 1000000.
Input will be terminated by a value of 0 for n.

Output

For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

Sample Input

8
20
42
0


Sample Output

8 = 3 + 5
20 = 3 + 17
42 = 5 + 37

#include<iostream>
#include<cmath>
using namespace std;
int n,m,p;
bool verify(int n)   //判断函数.判断是否为质数
{
m=sqrtf(n);
for(int i=2;i<=m;i++)
{
if(n%i==0)
{return false;break;}
}
return true;
}
int main()
{
while(cin>>n)
{
p=0;
if(n==0) break;
for(int i=2;i<=n/2;i++)
{
if(verify(i) && verify(n-i))   //使a从2开始,找到一组满足要求的a和b,结束,输出a,b
{
p++;
cout<<n<<" = "<<i<<" + "<<n-i<<endl;
break;
}
}
if(p==0)
cout<<"Goldbach's conjecture is wrong."<<endl;   //没有满足要求的a和b
}
return 0;
}

#### hdu 1397 Goldbach's Conjecture

2014-12-05 13:13:38

#### LightOJ 1259 - Goldbachs Conjecture （分解偶数为两个素数之和）

2016-03-08 17:43:06

#### 九度OJ-1440：Goldbach's Conjecture

2017-02-05 15:00:32

#### POJ 2262 Goldbach's Conjecture(哥德巴赫猜想)

2015-08-13 22:29:33

#### POJ2909_Goldbach's Conjecture【素数判断】【水题】

2014-09-24 09:01:44

#### 1397.Goldbach's Conjecture

2016-12-07 18:09:44

#### POJ2262-Goldbach's Conjecture

2011-07-29 01:57:56

#### poj2262-Goldbach's Conjecture

2013-06-06 13:31:33

#### POJ-2262 Goldbach's Conjecture

2015-07-19 11:11:33

#### Hdu 4715 Difference Between Primes (2013网络赛 warm up) & LightOJ 1259 Goldbachs Conjecture(素数和差)

2013-09-08 20:42:54