创建一个SEO计划(四)

理解Organic SEO

Organic SEO相比其他SEO方法要做更多的工作,许多专业的SEO人员都认为真正的SEO就是自然的,并不是用新的技术或者耗费大量时间到搜索引擎提交自己的网站。其实主要的意思是一定要免费。其实真正的SEO都是免费和付费相结合的方式。

其实Organic SEO的意思非常简单,有的SEO认为是优化网站的内容,更容易被网络爬虫发现并索引。有的认为是要在网页中增加大量的链接。其实这两点仅仅是Organic SEO的一部分。还有其他的因素,如站点的标签等等,把一个站点设计的更好,就会在搜索引擎中获得更好的排名。

 

网络爬虫通过网页标签来检查站点内容。要使排名提高,首先就要提高网页内容和网页标签内容(如META,和link)一致。

如果内容不符合的话,搜索引擎就会降低网站的排名,也有可能在搜索结果中删除这个网站。像博客类的网站,搜索引擎会检查博客更新的频率以及寻找次博客的内容。当然,并不是适用于所有的网站,在有些比较特殊的网站,如产品类的,内容并不会常常更新。内容的静态也是可行的。

 

有的时候,产品也需要更新或者修改,正好使网页爬虫经常光顾你的网站。内容是影响排名的重要因素。所以制定一份网站更新计划是很重要的,如什么时候更新,以及由谁去更新。

 

另一个要考虑的因素就是关键词,你会把重要的关键词添加到网页的内容中,当然这样过多或过少都不好,这必须通过更多的时间去做测试。以后的教程会详细的说明利用关键词提高搜索引擎排名的方法。

 

选择关键词一定要站在用户的角度去思维,如果你是个卖打印机的网站,可能会有"显示打印机"这个词或短语,但是用户很少会搜索这个词,有可能是,"喷墨打印机","购买打印机"等等。

 

学会选择更好的关键词,可能要以用户的思维去思考问题。所以这个十分的不确定,就需要时刻调整内容关键词,来确认哪个关键词会更好。

 

关于监测工具有很多,如果用免费的话,可以使用google analytics .

 

Google Analytics

这款工具是免费的。但是一定要注册一个google帐户才能使用。可以通过这个工具来查看访问网站的来源。建议使用。

 

用户体验

用户体验这东西很难评判,简单的来说就是用户怎么样能更简单的访问你的网站,以及提高网站的粘稠度。提高用户体验确实很难。。。

 

网站用户体验做的好,确实能使网站排名提高。搜索引擎发展已经很智能了,它能记录到用户搜索并点击的网站,都会提高网站在引擎中的排名。

 

我们来模拟一个场景,当你搜索打印机的时候,出现了结果页面,大部分用户都是根据描述来选择要点击的网站。如果点击了第五名的网站,搜索引擎就会记录到点击了第五名的网站。虽然此网站只在第五名,但是点击也作为排名的一个因素。搜索引擎会根据点击来调整排名。但是如果用户点击之后,发现网站内容和自己想要的不符合。就会选择“回退”,这样就会成为降低网站排名的一个因素。

 

通过以上的例子看出增加网站的易用性,粘稠度对搜索引擎影响排名影响非常大。要明白的是搜索引擎的最终目标是让用户找到自己关心的信息。所以很重要的一点就是用户查找到你的网页后,要使他们认为这个网站的信息功能对他们是有用的。

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
健身国际俱乐部系统是一种专为健身俱乐部设计的管理软件,它通过集成多种功能来提高俱乐部的运营效率和服务质量。这类系统通常包含以下几个核心模块: 1. **会员管理**:系统能够记录会员的基本信息、会籍状态、健身历史和偏好,以及会员卡的使用情况。通过会员管理,俱乐部可以更好地了解会员需求,提供个性化服务,并提高会员满意度和忠诚度。 2. **课程预约**:会员可以通过系统预约健身课程,系统会提供课程时间、教练、地点等详细信息,并允许会员根据个人时间表进行预约。这有助于俱乐部合理安排课程,避免资源浪费。 3. **教练管理**:系统可以管理教练的个人信息、课程安排、会员反馈等,帮助俱乐部评估教练表现,优化教练团队。 4. **财务管理**:包括会员卡销售、课程费用、私教费用等财务活动的记录和管理,确保俱乐部的财务透明度和准确性。 5. **库存管理**:对于俱乐部内的商品销售,如健身装备、营养补充品等,系统能够进行库存管理,包括进货、销售、库存盘点等。 6. **数据分析**:系统能够收集和分析会员活动数据,为俱乐部提供业务洞察,帮助俱乐部制定更有效的营销策略和业务决策。 7. **在线互动**:一些系统还提供在线平台,让会员可以查看课程、预约私教、参与社区讨论等,增强会员之间的互动和俱乐部的社区感。 8. **移动应用**:随着移动设备的普及,一些健身俱乐部系统还提供移动应用,方便会员随时随地管理自己的健身计划。 9. **安全性**:系统会确保所有会员信息的安全,采取适当的数据加密和安全措施,保护会员隐私。 10. **可扩展性**:随着俱乐部业务的扩展,系统应该能够轻松添加新的功能和服务,以适应不断变化的市场需求。 健身国际俱乐部系统的选择和实施,需要考虑俱乐部的具体需求、预算和技术能力,以确保系统能够有效地支持俱乐部的运营和发展。通过这些系统的实施,健身俱乐部能够提供更加专业和高效的服务,吸引和保留更多的会员,从而在竞争激烈的
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值