题目为:对于普通的单向链表,如果实现确定其内部有一个环,如何确定何处出现环路的?单向链表每个节点中只有data和next两个字段。
(单向链表含环路,不要总是想到“0”型环路,还要想到“6”字型环路)
原本听到这道题时,我首先想到的笨办法就是:建一个足够大的一维数组,,每个位置放Node*类型指针。而后开始遍历单向链表,遍历过一个节点后就将该节点的指针添加到这个一维数组中,随后与该数组前边的所有元素进行一次遍历比较,如果有重复,则定位到了这个出现环路的节点。
但是后来面试官说:这个空间复杂度有点大,如果场景是有几百万条记录呢?有没有办法大大的降低这个时间复杂度? 因为是电面的,自己一时也没想出什么好办法来,惭愧惭愧~今天一早请教了下龙哥,龙哥给出了一个不错的思路,我测了一下,没有问题。
主体思路是:
从头结点开始遍历整个链表,没遍历过一个节点:就将其next置为NULL.这样:当往后遍历到某个节点:其next指向节点的next为NULL时变找到了。 注意:①很多人看到后会说:你这样不是破坏了原先的单向链表了吗?的确是这样,所以在考虑这种算法时还要同时考虑该如何进行恢复!最好是:使用完了之后接着恢复。而要做到这一点只能用递归来实现。(不过用递归貌似还是很大空间复杂度)
所以:有时候递归用来处理这种既需要全局变化,又需要恢复的算法时很有用。
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/NRC_DouNingBo/archive/2010/06/23/5688868.aspx
还有另外一篇介绍的方法,比这个方法要简答
有一个单向链表,如何判定这个链表当中是否包含有环路,以及如何定位环路在链表当中的开始点呢?
关于第一个问题,网络上可以搜索到,用两个指针来遍历这个单向链表,第一个指针p1,每次走一步;第二个指针p2,每次走两步; 当p2 指针追上 p1的时候,就表明链表当中有环路了。
关于这个解法最形象的比喻就是在操场当中跑步,速度快的会把速度慢的扣圈
可以证明,p2追赶上p1的时候,p1一定还没有走完一遍环路,p2也不会跨越p1多圈才追上
我们可以从p2和p1的位置差距来证明,p2一定会赶上p1但是不会跳过p1的
因为p2每次走2步,而p1走一步,所以他们之间的差距是一步一步的缩小,4,3,2,1,0 到0的时候就重合了
根据这个方式,可以证明,p2每次走三步以上,并不总能加快检测的速度,反而有可能判别不出有环
比如,在环的周长L是偶数的时候,初始p2和p1相差奇数的时候,p2每次走三步,就永远和p1不重合,因为他们之间的差距是: 5, 3 , 1, L-1, L-3
关于第二个问题,如何找到环路的入口,是这里要重点说明的内容:
解法如下: 当p2按照每次2步,p1每次一步的方式走,发现p2和p1重合,确定了单向链表有环路了
接下来,让p2回到链表的头部,重新走,每次步长不是走2了,而是走1,那么当p1和p2再次相遇的时候,就是环路的入口了。
这点可以证明的:
在p2和p1第一次相遇的时候,假定p1走了n步骤,环路的入口是在p步的时候经过的,那么有
p1走的路径: p+c = n; c为p1和p2相交点,距离环路入口的距离
p2走的路径: p+c+k*L = 2*N; L为环路的周长,k是整数
显然,如果从p+c点开始,p1再走n步骤的话,还可以回到p+c这个点
同时p2从头开始走的话,经过n不,也会达到p+c这点
显然在这个步骤当中p1和p2只有前p步骤走的路径不同,所以当p1和p2再次重合的时候,必然是在链表的环路入口点上
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/happy__888/archive/2005/12/21/558356.aspx