题意:数轴上每个位置为0或是1,给n(1 <= n <= 50000)个区间[ai, bi],每个区间内至少有 ci 个1.0 <= ai <= bi <= 50000,1 <= ci <= bi - ai+1。问数轴上至少有多少个1可以满足要求。
解法1:现将区间按右端点排序,然后每个区间内的点尽量往右边放,这样子可以照顾到以后的。在找每个区间的放法时,线段树查询区间1的个数,二分查找要放的后缀位置,然后将整个区间后缀全部涂上1.总复杂度是nlognlogn。网上没找到有人这么做的,但确实可以。
解法2: 将每个数轴的前缀的1的数量当做一个点。然后[ai,bi]之间有ci个点,就是点ai-1到点bi有个ci的边。然后每个位置最少0个1,最多1个1.所以ai 到 ai+1有个0长度的边,ai+1到ai有个-1长度的边。 然后就是求左端点到右端点的最长路了。