无创血糖浓度检测技术的研究

摘要

糖尿病是目前较为普遍的一种内分泌疾病,在美欧等发达国家约有3%的人口患有不同程度的糖尿病,在我国随着人民生活水平的不断提高,糖尿病的发病率呈上升趋势。糖尿病患者减少由糖尿病引起的并发症的重要手段是自我监测,目前主要的检测方法是有创或微创的,给患者不可避免的带来痛苦和不便。无创血糖检测技术具有无疼痛、无感染、测量简单、测量速度快等优点, 能有效地满足糖尿病人实时、频繁监测血糖浓度的需要, 是血糖检测技术发展的方向。其中近红外无创血糖检测是最有前景的无创血糖检测方法之一, 是无创检测技术研究的热点。本文对利用近红外光漫反射技术进行无刨血糖检测研究进行了综述,介绍了检测系统的工作原理及硬件组成,分析了其优缺点,总结陈述了目前国内外的研究及发展。

关键词: 近红外光谱,血糖浓度,糖尿病,无创检测

目  录

1  引言

1.1  本课题研究背景

1.2  本课题国内外研究现状

1.3  本课题研究难点

1.4  本课题设计原理

1.5  本课题研究前景与意义

2  糖尿病及血糖检测技术简介

2.1  糖尿病简介

2.1.1  糖尿病定义

2.1.2  糖尿病的病因

2.1.3  糖尿病的危害

2.2  血糖监测技术发展

2.3  无创血糖检测技术简介

2.3.1  近红外光谱无创血糖检测

2.3.2  其他无创血糖检测技术简介

3  近红外光谱的发展概况及其应用

3.1  近红外光谱的产生及其特性

3.1.1  近红外光谱的产生

3.1.2  近红外光谱的特征

3.2  近红外光谱技术发展

3.3   近红外光谱的分析与特点

3.4  光谱仪简介

4  血糖近红外光谱定量分析方法

4.1  血糖近红外光谱定量分析

4.1.1  比尔定律

4.1.2  近红外光谱的定量分析及步骤

4.1.3  光谱的预处理

4.1.4  校正模型的建立与验证

4.2  偏最小二乘法简述

5  近红外光谱无创血糖检测系统

5.1  近红外光谱无创血糖检测系统设计

5.2  检测位置的选择

5.3  测量系统数据处理

5.4  影响测量结果因素及处理

6  结论

6.1  论文总结

6.2  本文的不足

6.3  研究课题展望

参考文献

致谢

3  近红外光谱的发展概况及其应用

近红外光谱技术随着计算机技术的发展和化学计量学的应用而越来越成为现代分析技术领域的巨人。近红外光谱技术具有不破坏样品、不需样品的处理准备、测量迅速准确和分析过程简单等特点。在生物医学上,近红外光谱技术的应用也越来越广泛。人体的骨骼、肌肉、脂肪、皮肤及体液等在短波近红外区(700~1000nm)相对来说是透明的,因而其吸光系数非常小,以致于检测光线可以在体内穿透几厘米,因此无需任何特殊的试剂。近红外光谱可以快速、非破坏性测定光散射效应强、组成复杂且非均相的人体组织基质。可以用于皮肤组织受外界环境影响(如阳光照晒和水洗等)的变化、检测乳癌、血色素测定、临床分析(血清中葡萄糖浓度、总蛋白、白蛋白、球蛋白、胆固醇等)、人体血清中脂蛋白、人体体液成分分析,人体内血液中的氧含量等。国内外专家在无创血糖测量方面进行了大量的研究和实验,在光谱采集部位和数据处理方法等方面进行了讨论。随着人们对近红外光谱认识的深入和人体组织研究的进步,近红外光谱技术必将得到更加广泛的应用。

3.1  近红外光谱的产生及其特性

3.1.1  近红外光谱的产生

习惯上把红外区分为三个区域。波长780nm至2500mn的区域称作近红外区。波长2500nm至25000nm的区域称作中红外区,绝大多数有机化合物和许多无机化合物的化学键振动的基频均在此区域出现。波长25μm至1000μm的区域,称做远红外区。一般近红外常用波长(nm)表示光谱位置与范围,而中红外则常用频率或波数表示。

从光源发出的红外光照射到由一种或多种分子组成的物质上,如果分子没有产生吸收则光穿过样品,该物质分子为非红外活性分子;否则为红外活性分子。只有红外活性分子中的键才能与近红外光子发生作用,产生近红外光谱吸收。分子在红外光谱区内的吸收产生于分子振动或转动的状态变化或者分子振动或转动状态在不同能级间的跃迁。这些能量跃迁可以通过量子力学理论进行阐述。描述以上叙述的几种跃迁经常使用谐振子(Harmonic Oscillator)和非谐振(Anharmonic Oscillator)模型。能量跃迁包括基频跃迁(对应于分子振动状态在相邻振动能级之间的跃迁),倍频跃迁(对应于两种振动状态在相隔一个或几个振动能级之间的跃迁)和合频跃迁(对应于分子两种振动状态的能级同时发生跃迁)。所有近红外光谱的吸收谱带都是中红外吸收基频(4000~1600cm-1)的倍频及合频600cm的倍频及合频。近红外光谱是分子中基团原子间振动跃迁时吸收近红外光所产生的。

3.1.2  近红外光谱的特征

大多数近红外光谱有着不同于中红外光谱的信息特征。从频率范围划分,近红外光谱的波数在4000cm-1以上(即2500nm以下),因此只有振动频率在2000cm-1以上的振动,才可能在近红外区内产生一级倍频,而能够在2000cm-1以上产生基频振动的主要是含氢官能团,如C—H、N--H、S--H和O--H的伸缩振动。其它官能团,如羧基碳与氧原子的伸缩振动、C—N伸缩振动、C—C等的伸缩振动在近红外区仅能产生多级倍频。这些多级倍频的信号强度很弱,如羰基的伸缩振动在1750cm-1,一级倍频应在300Onm左右,较弱的二倍频约在2lOOnm,三级倍频在1650nm,这些倍频通常被含氢官能团的一级或二级倍频所掩盖。更弱的四级倍频在1370nm,其强度太弱。精确确定近红外谱带的归属很困难,因为每个近红外谱带可能是若干个不同基频的倍频和合频谱带的组合,没有锐峰和基线分离的谱峰,大量的是重叠谱峰和肩峰。近红外光谱包含了键强度、化学组分、电负性和氢键的信息。对于固体样品,很多其它信息,如散射、漫反射、特殊反射、表面光泽、折光指数和反射光的偏振等都被加载到样品近红外光谱上。这些都使近红外光谱的解析复杂化。这也是造成近红外区曾经一度被“遗忘”的原因。这意味着在信息的提取方式及用途上,近红外光谱与中红外光谱将有大的区别。

基频及倍频谱带在强度上存在着数量级的差别,表3.1.2.1列出C—H键近红外与中红外谱带强度比较情况。近红外信息与中红外信息强度比较,低2-4个数量级。物体对光的散射随着波长的减短而增大,近红外波长比中红外波长短,因此,近红外更适于作漫反射和散射光谱分析。适用于近红外光谱区的光学材料比中红外的多,与中红外相比,用可透过近红外光的普通玻璃和石英材料作光学材料,不仅降低了材料费用,也有利于光学器件的维护,还可使用光纤传输,使得近红外光谱测量更容易。

表3.1.2.1 CH键近红外与中红外谱带强度的对比

谱带

波长(nm)

相对强度

需用光程(cm)

基频

3380-3510

1

0.01-0.4

一级倍频

1690-1755

0.01

0.1-0.2

二级倍频

1127-1170

0.001

0.5-2

三级倍频

845-878

0.0001

5-10

四级倍频

0.00005

10-20

正是近红外光谱具有上述特征,赋予了近红外光谱分析一些独特魅力,如样品可以不经预处理,直接检测各种类型的样品,除液体样品外,还可检测粉末、纤维、湖状、乳状等形式样品。同时,构成近红外谱带的背景非常复杂,从近红外提取的是弱信息,通常使用化学计量学方法。在近红外光谱区产生吸收的官能团主要是含氢基团,包括:C--H(甲基、亚甲基、甲氧基、羧基、芳基等),羟基0--H,巯基S—H,氨基N--H(伯胺、仲胺、叔胺和铵盐)等。合频近红外谱带位于2000~2500nm处,一级倍频位于1400~1800nm处,二级倍频位于900~1200nm处,三级和四级或更高级倍频则位于780~900nm处。有关这些含氢基团的主要近红外谱带中心近似位置见下表。虽然,近红外光谱分析被称为“黑匣子”分析技术,但是,掌握有机物近红外谱带的归属依然有益于近红外光谱分析的应用。许多文献对有机物近红外谱带做了详细介绍。

表3.1.2.2 含氢基团的主要近红外谱带中心近似位置

基团

C-H

N-H

O-H

伸缩振动基频

3300

2940

2740

弯曲振动基频

6900

6250

7700

合频

2300

2200

2000

一级倍频

1745

1540

1450

二级倍频

1210

1040

960

三级倍频

934

785

730

四级倍频

762

3.2  近红外光谱技术发展

近红外区是人们最早发现的非可见光区域,距今已有近200年的历史。本世纪初,人们采用摄谱的方法首次获得了有机化合物的近红外光谱,并对有关基团的光谱特征进行了解释,预示着近红外光谱(Near Infrared Spectroscopy缩写为NIR)有可能作为分析技术的一种手段得到应用。由于缺乏仪器基础,50年代以前,近红外光谱的研究只限于为数不多的几个实验室中,且没有得到实际应用。50年代中后期,随着简易型近红外光谱仪器的出现及Norris等人在近红外光谱漫反射技术上所做的大量工作,掀起了近红外光谱应用的第一个高潮,近红外光谱在测定农副产品(包括谷物、饲料、水果、蔬菜、肉、蛋、奶等)的品质(如水分、蛋白、油脂含量等)方面得到广泛使用。由于这些应用都基于传统的光谱定量方法,当样品的背景、颗粒度、基体等发生变化时,测量结果往往产生较大的误差。进入60年代中后期,随着(中)红外光谱技术的发展及其在化合物结构表征中所起的巨大作用,使人们淡漠了近红外光谱在分析测试中的应用。在此后约20年的时间里,除在农副产品领域的传统应用之外,近红外光谱技术几乎处于徘徊不前的状态,以致被人们称其为光谱技术中的沉睡者。进入80年代后期,近红外光谱才真正为人们所注意,这在很大程度上应归功于化学计量学方法的应用,再加上过去中红外光谱技术积累的经验,使近红外光谱分析技术迅速得到推广,成为一门独立的分析技术,有关近红外光谱的研究及应用文献几乎呈指数增长。1988年国际近红外光谱协会(CNIRS)成立,该协会北美分会对1905-1990年有关近红外光谱的文献做了全面汇编(CBIBL)。关于近红外光谱研究及应用的专业期刊Journal Near lnfrared Spectros copyNearlnfrared News先后于90年代初创刊。1987年举办第一届近红外光谱研究与应用的国际会议,至今已举办了九届。每次会议都出版了相应的文集,刊登了大量涉及近红外光谱仪器、计量学方法、新技术发展及各种新应用的文章。同时,在其它涉及分析与光谱的杂志,如Applied SpectroscopyAnalytical Chemistry上也刊登了大量近红外光谱基础研究及应用的文章。近年来,有很多近红外光谱技术也出现在各国的专利中。目前从事近红外光谱仪器生产的厂商已不下几十家。我国对近红外光谱技术的研究及应用起步较晚,但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了可喜的成果。

3.3   近红外光谱的分析与特点

近红外光谱分析方法由两个要素组成,一是准确、稳定地测定样品的吸收或漫反射光谱谱图的硬件技术(即光谱仪器),这—硬件技术的主要要求就是必须保持长时间的稳定性;另一个是利用多元校正方法计算测定结果的软件技术。近红外光谱的早期应用大都是对一定样品的特定组分的定量,如谷物中的水分含量测定,以后才逐渐用于定性或判别分析,其依据是同类样品在不同波长下具有相同的光谱。但如前已述及近红外光谱的分辨率远不如中红外光谱,因此其定性分析也必须借助于多元校正方法(其中最常用的方法如主成分分析,马氏距离和归一化距离等),以使各种样品进行聚类识别。在特定波长范围内,样品的吸收光谱由光谱检测器测出,数字化后存入计算机。因为分辨率的原因,要充分利用光谱所提供的信息必须采用多波长数据,目前常采用全谱数据或几个特定波段的吸收数据,数据采样点也很密集。在未知样品分析前,必须有一组样品作为一个校正集,对校正集的每一个样品测量其光谱和对应的组成或性质,与单波长测定建立校正曲线一样,事先必须用多元校正方法将测量的光谱与性质或组成数据关联,建立校正模型[7,9,10]。校正模型的建立一般采用已有的软件。在需要测定未知样品时,必须使用这一模型及测定的未知样品的光谱,计算其组成或性质。因此,近红外光谱分析技术实际上是一个二级分析方法。它所能得到的准确度不能超过在建立模型时所用测定组成或性质方法的准确度。

近红外光谱技术之所以能在短短的10多年内,在众多领域得到应用,进而在数据处理及仪器制造方面有如此迅速的发展,主要因为它在有机化合物的分析测定中有以下独特的优越性[16]

1.很多物质在近红外区域的吸收系数相对较小,使分析过程变得简单作为分子振动能级跃迁产生的吸收光谱,近红外区域的倍频或合频吸收系数很小,一般较红外基频吸收低1-3个数量级,故样品无需用溶剂稀释即可以直接测定,便于生产过程的实时测定。所用样品池的光程不像中红外区常在1mm以下,近红外区域根据所使用的谱带和测试物含量的高低,光程可以是1~100mm,长样品池使清洗过程变得非常方便。虽然吸光系数小会妨碍样品中微量杂质的测定,但也保证了微量杂质或在近红外吸收弱的组分不至于干扰测定结果。

2.适用于漫反射技术

近红外区内光散射效应大且穿透深度大,使得近红外光谱技术可以用漫反射技术对样品直接测定。固体样品可以是任何形状,如水果、谷物或固体药丸都可以直接测定,便于检查各部位或每—颗粒的质量。在短波近红外区域(700~l100nm),对固体样品的穿透深度可达几厘米,而被吸收的光强很小。大部分固体样品的在线检测都使用漫反射技术。

3.近红外光可以在玻璃或石英介质中穿透

近红外区的波长比红外短,因而不被玻璃或石英介质所吸收。所用的样品池容器可以用常用的玻璃或石英制成,价格较低,使用也方便。有时可以直接在玻璃容器中进行测定,而无需打开密封的容器,避免样品的转移手续及不必要的污染。近红外光的这一特性,更重要的是使一般玻璃或石英光纤可以用于近红外光谱技术,光导纤维的引进使传统的近红外光谱技术扩展到了过程分析及有毒材料或恶劣环境中样品的远程分析,同时也使光谱仪的设计得以更多用且小型化。

4.可以用于样品的定性,也可以得到精度很高的定量结果采用多元校正方法及一组已知的同类样品所建立的定量模型,可以快速得到相对误差小于0.5%的测量结果。例如,汽油辛烷值的测定重复性可以达到0.3个单位,其中苯含量测定的相对误差可以小于0.5%。定性分析采用识别分析程序,先取得一组已知样品的吸光度分布模型,再测得待定性样品在不同波长下的吸光度分布,用聚类原理确定样品是否属于已有的模型,即这一类已知的样品。如果已知样品有好几类,则可以从几种模型中选出最接近的一类以定性。例如,在石油化工中,可以用定性的方法指出某一个样品汽油是属于直馏、催化裂化还是重整工艺的产品。在织物的分类中,可以区别毛纺、棉纺、涤纶及混纺等不同的纤维类型。

5.不破坏样品,不用试剂,故不污染环境

近红外光谱分析中只是取得样品的光谱信号,有时甚至可以在原容器中进行测定,因此不需要其它试剂,样品测定后一般可以送回原生产地或容器,因此测试过程中不会产生任何污染。

6.测定速度极快

近红外光谱的信息必须由计算机进行数据处理及统计分析,一般一个样品取得光谱数据后可以立刻得到定性或定量分析结果,整个过程可以在不到二分钟内完成。近红外光谱技术的另一个特点是通过样品的一张光谱可以计算出样品的各种组成或性质数据。当然如前面所提到的,这种快速分析是建立在已有模型基础上的,也就是说必须事先对这类样品的光谱及各种性质的关联作好前期工作。已有一些商品模型可以购买,以节省很多建模的费用及时间。

7.不适合于痕量分析及分散性样品的分析

如果面对的样品仅有几毫克或要分析的组分在样品中的含量仅有1×10-6,近红外光谱分析是有困难的,最好去寻求另一种方法。前已说明,建立近红外光谱方法之前,必须投入一定的人力、物力和财力才能得到一个准确的校正模型。因此,对于经常的质量控制是十分经济且快速的,但对于偶然做一二次的分析或分散性样品则不太适用。

3.4  光谱仪简介

光谱仪器是进行光谱研究和物质的光谱分析的装置。它的基本作用是测定被研究的光(所研究的物质发射的、吸收的、散射的或受激发射的荧光)的光谱组成,包括它的波长、强度、与轮廓等。为此,光谱仪器应具有的功能是:把被研究的光按波长或波数分解开来;测定单个波长的光所具有的能量,得到能量按波长的分布;把分解开的光波及其强度按波长或波数的分布显示、记录下来,得到光谱图。要具备上述功能,一般光谱仪器的基本组成有:光源和照明系统、准直系统、色散系统、成像系统以及接受、检测显示系统。

光谱仪器的基本特性主要是:工作光谱范围、色散率、分辨率、光强度及工作效率等。其中工作光谱范围是指使用光谱仪器所能记录的光谱范围。它主要决定于仪器中光学零件的光谱透射率或反射率、以及所采用的探测系统的光谱灵敏度界限。例如,玻璃棱镜光谱仪的工作光谱范围为400nm~1000nm(实际可达到2.5um),大于1000nm的波长范围应用红外晶体材料制造光学零件,小于400nm的波长范围要用石英或荧石来制造光学零件。改变光栅表面反射膜层的光谱反射率,反射式光栅可以用在整个光学光谱区。光电倍增管的光谱灵敏度界限只能达到850nm左右,红外波段则要求改用热电元件作为接收器;色散率则表明从光谱仪器色散系统中射出的不同波长的光线在空间彼此分开的程度,或者会聚到焦平面上时彼此分开的距离。前者可用角色散率表述,后者用线色散率表述;分辨率是表明光谱仪器分开波长极为接近的两条谱线的能力,这是光谱仪器极为重要的性能指标;光度特性是表示光谱仪器传递光能量的本领,即表明辐射光源的光谱亮度和光谱仪器直接测得的光度数值之间的关系;光谱仪器的工作效率是它记录光谱的精度和速度的综合指标。这里所指的精度包括记录光谱波长的精度和光谱强度的精度,它和仪器的光强度、色散率、分辨率等因素有关。

光谱仪的种类非常多,分类的方法也不同,一般根据它们的工作原理与结构进行分类。从光谱仪分解光谱的工作原理来分有两类:经典光谱仪器和新型光谱仪器。经典光谱仪器是建立在空间色散(分光)原理上的仪器;新型光谱仪器是建立在调制原理上的仪器,故又称为调制光谱仪;根据接收和记录光谱的方法不同,光谱仪器可分为:看谱仪,摄谱仪,光电光谱仪:又可分为光电直读光谱仪、光电单色仪和分光光度计;根据光谱仪器所能正常工作的光谱范围,光谱仪器可分为:真空紫外(即远紫外)光谱仪,紫外光谱仪,可见光光谱仪,近红外光谱仪,红外光谱仪,其中近红外光谱仪的工作光谱范围从可见光区至2.5um。

4  血糖近红外光谱定量分析方法

本章对血糖近红外光谱定量分析的原理和过程进行了讨论,为进一步的实验和分析找到合理的步骤。针对现代近红外光谱分析技术,讨论和分析了几种常用化学计量学方法的特点,选择最佳的计算方法。由以上的比较可以得出:PLS方法是在近红外光谱分析中效果最好的一种方法。因为它是将因子分析和回归分析结合的方法,这种方法通过因子分析将光谱压缩为较低维空间数据,其方法是将光谱数据向协方差最大方向投影。将原近红外光谱分解为多种主成分光谱,不同近红外光谱的主成分分别代表不同组分和因素对光谱的贡献,去掉干扰组分和干扰因素主成分,仅选取有用的主成分参与质量参数的回归。从而,确定了在今后的血糖和尿糖近红外光谱分析应用最优的化学计量学方法。提高近红外光谱分析的准确性,除了采用精度高的实验仪器和合理的实验步骤外,数据处理采用的数学方法对结果的精度至关重要。

4.1  血糖近红外光谱定量分析[16]

4.1.1  比尔定律

最简单的光谱分析是一般的比色分析。如果吸收峰的强度与某一物质的浓度成正比

                                                (4.1)

式中A——吸光度;

c——浓度;

E——消光系数;

——入射光强;

I——出射光强。

如果已知E,根据A求c,则计算式为:

                                                            (4.2)

因此,式(4.2)有时也称作反比尔定律,其中的E是一个常数。可以任意一个符号表示(4.2),也写作:

                                     (4.3)

但是,当样品中两种物质有不同颜色且相互干扰时,比尔定律仍然适用。

在两个波长

,写出如下表达示:

                                              (4.4.1)

                                             (4.4.2)

式(4.4.1)和(4.4.2)中有两个光学变量及两个浓度变量。对上式解联立方

程,求解为:

                                               (4.5.1)

                                               (4.5.2)

写作矩阵形式表示:

                                       (4.6)

式(4.6)中A是光谱矩阵,表示被测样品在选定波长处的吸收值,常称作自变量。C是行矢量,表示样本的性质或组分的浓度数据,常称作因变量。B则为校正系数(或消光系数)。在一般情况下,C和A都是由实验测得的,所以不可避免地会引进误差。正是由于误差的存在,对于多波长和多组分体系,必须用下式来表示比尔定律:

                                              (4.7)

式中,Y为式(4.6)中的C;X为式(4.6)中的A;B为消光系数;E为残差。

4.1.2  近红外光谱的定量分析及步骤

近红外光谱的定量分析

分析峰的选择:近红外光谱的定量分析是以测定某特征官能团的吸收峰强度为基础的:此吸收峰叫“分析峰”。此分析峰应该选择在待测组分的特征吸收带处,强度尽可能大,与邻近谱带及杂质的谱带分离好,以防杂质和其他组分的干扰。以后的定量分析就用此分析峰代表待测组分了。

(1)吸光度的测量:吸光度的测量主要有两种方法,即顶点强度法和面积强度法。具体方法见下图

图4.1.2.1 顶点强度法和面积强度法的计算方法

(a)顶点强度:

(b)面积强度:

(a)顶点强度法:顶点强度法又可分为峰高法和基线法。下面介绍常用的基线法。在分析峰的两侧选谱带两边最大透过率处的两点划切线为基线,

可象下图那样确定。作为一个原则,应该尽量选取连接吸收带邻近区域的透过率最高的两点作基线,这样可以减少干扰因素。吸光度

图4.1.2.2 基线的画法

(b)面积强度法:用吸收谱带的全面积来确定吸收强度可按下式计算:

B为吸收谱带表观积分强度,l为光程长,c为浓度,

为吸收谱带起始及终止的波数。如果谱带对称性好,可以用谱带半峰宽和光密度来计算谱带积分强度;对称性不好,可以用光密度对吸收频率作图,然后用求积仪求面积,求表观积分强度。

(2)定量分析的方法

定量分析的根据是比耳定律,首先做出样品中所有成分的标准物质的红外光谱,选择待测组分的分析峰。用已知浓度的标准样品和未知样品进行比较,根据它们的吸光度进行定量,这个方法叫标准法。具体做法有两种:

(a)直接计算法:由比耳定律可知,样品浓度

,其中A可由光谱图上测得(

),E可由已知浓度的标准物质求出。使用同样的方法测出试样的吸光度A*,因E已知,所以试样中待测组分的浓度C*可由式

求出。此方法只适用于浓度与光密度成线性关系、分析峰不被其他成分和溶剂干扰、吸收池厚度可精密测得的情况下。

(b)工作曲线法:若被测定的试样的浓度变化很大,或由于使用极性溶剂造成光密度与浓度的关系不严格遵守朗伯—比耳定律,可采用工作曲线法。先用待测组分的标准样品配制不同浓度的一系列标准溶液,逐一在分析峰处测出吸光度。以吸光度为纵坐标,以浓度为横坐标,绘制工作曲线。然后测定待测样品溶液的吸光度值,在工作曲线上找出对应的待测样品溶液的浓度值再计算。

在近红外光谱分析中,计算机除了控制仪器、收集数据外,还用各种多元校正方法解析谱图,即建立光谱与组成或性质间的校正模型,并用该模型预测未知样品的组成或性质。

模型建立的基本步骤如下所述:

1、校正模型训练集样品的选择

2、用标准方法测定样品物化性质

3、测量光谱数据

4.1.3  光谱的预处理[17]

1、噪声滤除

噪音主要来自高频随机噪音、基线漂移、信号本底、样品不均匀、光散射等,可以用以下的处理方法滤除:

(1)平滑处理:主要去掉高频噪音对信号的干扰。最常用的方法是Savisky与Colay提出的卷积平滑方法,平滑处理涉及处理窗口的大小(或点数)。较大的平滑点数可以使信噪比提高,但同时也会导致信号的失真。因此,必须考虑仪器的具体情况,对平滑窗口的大小做出适当的选择。在本文进行的光谱处理中,都对光谱进行了平滑处理。下图是国内无创实验中某个志愿者的一段光谱,进行平滑处理前后的对比。

图4.1.3.1 平滑处理的影响1为处理前的谱线,2为处理后的谱线

(2)基线较正:主要是扣除背景或漂移对信号的影响,可以采用峰谷点扯平、偏置扣减、微分处理和基线倾斜等方法。采用微分可以较好的净化谱图信息,但在微分处理时,根据微分的级数和微分窗口数据点的大小也应做出合理的选择。本文对光谱都进行了基线校正。

(3)导数处理:导数处理有一次求导和二次求导。一次求导处理后,可以看出整个光谱曲线的变化率,用这种方法,吸收峰变的狭窄,便于观察到。在一次求导曲线上,最大点和最小点并不是原光谱曲线的最大和最小点。二次求导可以显示整个光谱变化率的变化,可以帮助找出吸收峰的准确位置。

2.归一化处理:用于消除光程的变化或样品的稀释等变化对光谱响应产生的影响。

3.数据筛选:数据筛选的目的是尽量从原始光谱数据中选取有用的数据,剔除无用的数据以减少以后的计算工作量。

4.光谱范围的优化选择:采用全谱计算时,计算工作量很大。实际上在有些光谱区域样品的光谱信息很弱,与样品的组成或性质间缺乏相关关系。为了找出最有效的光谱区域,可以将测定的组成或性质数据与样品的光谱数据进行关联,求出相关系数,并得到相关系数与波长的相关图。

5、中心化及标准化处理

数据中心化是从每个光谱数据中减去各个样品的平均值。这样处理后的光谱数据充分反映了变化信息,使所有的数据都分布在零点两侧,对于以后的回归运算可以简化并使之稳定。标准化通常是用同一列数据的方差去除,使每一个数据之间在数据标度上有可比性。

4.1.4  校正模型的建立与验证[18]

良好的校正模型应当是在用验证集样本对模型进行考核时,其预测结果与标准方法实际测量结果有良好的一致性。另外应尽量不受仪器变化温度变化和背景干扰等因素的影响,而只对样品物化性质的变化反映敏感。

数学模型,对于吸收光谱,是使用比耳定律来关联吸光度及某一物化性质。对于漫反射光谱,则使用与比耳定律相似的公式来关联相对反射度及某一物化性质。由于近红外光谱中各组分的谱带重叠严重,用单波长数据建立的校正曲线必将产生较大的误差,因此必须利用多波长甚至全谱的光谱数据建立校正模型。最常见的多元校正方法有多元线性回归、主成分回归及偏最小二乘等,其计算方法将在下面讨论。其中以多元线性回归的计算最为简单,但波长点的选择很有讲究,取得吸光度后建立吸光度矩阵。主成分回归在校正模型的建立中也得到较多的应用,其优点是不需专门寻找建模的波长,而是用全谱数据通过因子分析来建立模型,建模过程中如何选择主成分。偏最小二乘是目前在近红外光谱中应用最多的多元校正方法。除前面提到的三种常用校正方法之外,为解决一些特定的问题,如光谱与性质间存在非线性关系,有时也采用一些特殊的校正方法,比较有效的如人工神经网络、拓扑等方法。

数学模型建立后必须通过验证集样本的测量来判断模型的质量,模型质量的好坏常用下面几个统计数字来评定:

(1)残差(e):这是最简单的指标,即残差=已知值-测定值

最理想的结果是对于一组样品,它们的残差一部分为正值,一部分为负值,残差分布在零点上下。

(2)相关系数(R):

式中

——通过光谱测量及数学模型预测的结果;

——用标准方法测定的结果;

——

的平均值。

(3)正集样本的标准偏差:

其中n——建模用的样本数;m——独立变量数(在此为1)。

(4)预测集样本的标准偏差:

此外,在近红外光谱分析中,常常用到灵敏度和检测限。其中灵敏度直接取决于仪器的性能,即信噪比。而检测限可以大约为SEC的3倍。

4.2  偏最小二乘法简述

偏最小二乘回归PLS是一种新型的多元统计数据分析方法,也是本设计数据处理中主要使用的方法。选择偏最小二乘法作为主要的算法是因为它具有以下几个重要性:偏最小二乘回归是一种多因变量对多自变量的回归建模方法;偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题;偏最小二乘法可以实现多种数据分析方法的综合应用。

PLS具有以下优点:(1)可以使用全谱或部分谱数据;(2)数据矩阵分解和回归交互结合为一步,得到的特征值向量直接与被测组分或性质相关,而不是与数据矩阵中变化最大的变量相关;(3)如果选择的校正集具有代表性,PLS模型更稳健;(4)可以使用于复杂的分析体系。

PLS与去他算法同样有自己的缺点如计算速度相对较慢,模型建立过程复杂,较抽象,较难理解。

5  近红外光谱无创血糖检测系统

5.1  近红外光谱无创血糖检测系统设计

下图是此系统的示意图,受试者的手指端是测量点,此系统由四个激光二极管,光源,扫描设备,悬浮光探针和光电二极管组成。光源是由一系列发射特定波长的近红外高功率的激光二极管组成的。六个激光二极管的使用,每个都需要提供6mw的能量,扫描系统用来按顺序触发每个激光二极管的发光时间。当激光二极管发射出来的光直接传送到两根光学纤维时扫描系统触发,一根光纤用来反射光而另一根把光传输到测量点。光纤被连接到特定设计的磁悬浮光探针中,该探针接触指甲基部,处于自由浮动的状态。这个状态对于保持探头和甲床之间恒定的接触压力是很重要的。研究表明,此接触压的变化将导致近红外信号漫反射的的波动。一个恒定的接触压对于消除巨大的实验误差是很重要的。图5.1中放置的热电偶是用来测量手指的温度的。光纤巡回式地分布在一个表面平坦的圆柱体内,光纤网络定位在测试点上。信号从光电二极管和热电偶传送至数据采集板上,然后通过USB数据线传输到电脑上进行数据处理。 

图5.1 检测系统硬件图

5.2  检测位置的选择 

在此系统中我们选择手指作为检测位置,手掌组织具有明显的分层结构特性,它由表皮层、真皮层、皮下组织层和肌肉层组成。其中,皮肤(包括表皮层和真皮层) 的全层厚度约为4mm ,表皮层的厚度约为0.13mm 左右, 具体厚度随不同人的年龄、性别等有所差别。由于手掌组织的皮肤层较厚, 而测量所用近红外光源能量相对较弱, 因此,光子进入皮下脂肪组织和肌肉层的概率很低。同时皮肤和大多数组织一样, 以葡萄糖和脂肪作为能源物质。尤其在手指真皮乳头层中含有丰富的血管丛, 通过分析我们发现手指是比较理想的检测位置,可以利用经过真皮的近红外光谱特征来测量血糖浓度

近红外光在手掌组织内的传输特性(见图5.2)。

光射入手掌组织,忽略光在皮下组织层中的传递,则经手掌表面出射的光实际由三部分组成:入射光在手掌表面的镜面反射光

,直接由表皮层扩散反射出的光

,达到真皮层后扩散反射出的光

图5.2 近红外光在手掌组织中的传输示意图

由于表皮层内不含有血管,皮肤组织中的血管都分布在真皮层中,因此在经皮测量血糖浓度时,只需要分析经过真皮后扩散反射出来的光谱

下即可。

5.3  测量系统数据处理

由比尔定律知道近红外光经真皮的扩散反射光强

与血糖浓度值之间存在一定的相关,根据其相关特性可由

计算得到相应的血糖浓度值。近红外光谱分析中,一般先由测量到的一定数量的参考血糖浓度值与其相对应的光谱数据建立校正集数学模型,以后的测量中使用该校正集模型,根据近红外光谱数据即可预测得到相应的血糖浓度值。由于近红外谱峰较宽,谱带重叠严重,为减少校正曲线的误差,必须使用多波长光谱数据建立校正模型。这里运用前文提到的PLS(偏最小二乘)回归法进行建模分析具体分析如下

第一步:

式中,

为光谱矩阵,

为浓度矩阵,

为光谱矩阵的得分矩阵,

为浓度矩阵的得分矩阵,得分矩阵的列变量之间具有正交性质;

为光谱矩阵的载荷(即主成分)矩阵,

为浓度矩阵的载荷矩阵,载荷矩阵的行变量之间具有正交性质;

分别为用PLS模型拟合光谱矩阵和浓度矩阵时引进的残差矩阵。n为样品数目p为波长数日,f为最佳主成分数目,m为组分数。

第二步:对T和U做线性回归:

,式中

为回归系数矩阵。由被测样品的光谱矩阵A和校正得到的P求出样品光谱的T,再按第一步公式中求出样品浓度。

5.4  影响测量结果因素及处理

人体中水分占有很大的比例,由于水会随着氢键强度的改变而使它在某个波段的近红外光谱发生改变,而温度对化学键强度的变化有直接的影响。因此我们在进行测量时必须考虑温度对测量结果的影响。通过研究发现可以在不同光谱区间,温度对水的近红外光谱的影响是不同的。在某一区间内,水的吸光度会随着温度的升高而降低,而在另一区间内水的吸光度会随温度的升高而升高。我们在测量系统中加一个手指温度监测装置就是考虑了温度对测量结果的影响。可以通过模型的校正来消除温度对测量结果的影响。

由于血糖在不同的光谱区间内对近红外光吸收不同,所以选择合适的谱区也是该测量系统能够正常工作的重要因素。水是生物组织中的主要成分,不但有单一的红外光谱,还有丰富的扩展到近红外区域的合频和倍频光谱。对水的红外光谱分析可知,水在波长为1440nm1460nm1940nm1960nm区域吸收度最强,所以水溶液物质的分析波长应避开这两个区域。另外人体皮肤色素层的吸收光谱在llOOnm以下,所以波长的选择必须能够穿透色素层。Fuurex公司选取600nmllOOnm范围测量,很好的降低了血液中水份和其他成分的影响。但由于葡萄糖在141015401590(nm)等处也有吸收峰出现,因此在单一的波段内测量血糖是不合适的,造成的误差会很大。选择一部分光谱对血糖浓度很敏感,另一部分光谱对血糖变化敏感度较低,这样才能最大限度地减小血液中其他成分的影响。同时,水在1500nm1900nm 2100nm2320nm处透射率较大,且在2100nm2320nm处重复性比较高,因此选用这一波段来对葡萄糖浓度进行建模,由于人体组织的变化对光谱的改变远大于血糖浓度变化对光谱的改变,所以测量很可能是不可重复的,所以需要对每种组织的噪声光谱特点进行研究。

另外,采用正确的方法建立数学模型以对近红外光谱进行分析也是测量成功的保障。

6  结论

6.1  论文总结

本文对糖尿病作了初步的介绍,进而引出现代医学检测血糖浓度的方法,由于传统的血糖检测方法的一些弊端导致了无创血糖检测技术的产生,近红外光谱技术由于自身的特点引起了人们的关注,成为无创血糖检测研究方向的重点。本文对着重对近红外光谱以及其测量血糖浓度的原理进行了详细的介绍,并进一步对近红外光谱无创血糖检测系统进行了分析与阐述。

6.2  本文的不足

由于缺乏必要的设备与实验条件,本文还主要停留在对利用近红外光谱技术进行无创血糖检测的理论研究上,并没有通过实验对此种技术进行细致详细的研究。同时缺乏对数学模型的建立方法深刻的学习。

6.3  研究课题展望

随着糖尿病发病率越来越高, 血糖浓度测量受到越来越多的重视。国际上众多科研机构都开展了无创血糖检测的研究, 检测方法也多种多样。实现真正的无创血糖检测有其难点, 因此目前还都停留在科研攻关阶段,还没有能真正临床应用的无创血糖检测的报道。但总的来说无创血糖检测是血糖测量的发展趋势, 是能够真正实现糖尿病人实时自测血糖的唯一方案。

在各种无创血糖检测方法中,近红外无创血糖检测技术由于其自身的优点, 被认为是最有应用前景的无创血糖检测技术之一,也是目前投入研究最多的无创光谱检测技术之一。相信随着一些相关技术问题的解决, 近红外检测技术将能实现真正意义上的无创血糖测量和“绿色测量”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕设qq_3613469619

努力开发,您的鼓励就是我们动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值