ACM

# POJ 3298 递推，DP

Antimonotonicity
 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 2428 Accepted: 995

Description

I have a sequence Fred of length n comprised of integers between 1 and n inclusive. The elements of Fred are pairwise distinct. I want to find a subsequence Mary of Fred that is as long as possible and has the property that:

Mary0 > Mary1 < Mary2 > Mary3 < ...

Input

The first line of input will contain a single integer T expressed in decimal with no leading zeroes. T will be at most 50. T test cases will follow.

Each test case is contained on a single line. A line describing a test case is formatted as follows:

n Fred0Fred1Fred2 ... Fredn-1.

where n and each element of Fred is an integer expressed in decimal with no leading zeroes. No line will have leading or trailing whitespace, and two adjacent integers on the same line will be separated by a single space. n will be at most 30000.

Output

For each test case, output a single integer followed by a newline --- the length of the longest subsequence Mary of Fred with the desired properties.

Sample Input

4
5 1 2 3 4 5
5 5 4 3 2 1
5 5 1 4 2 3
5 2 4 1 3 5

Sample Output

1
2
5
3

Source

Source Code

 Problem: 3298 User: bingshen Memory: 252K Time: 172MS Language: C++ Result: Accepted
• Source Code
#include<stdio.h>
#include<string.h>

int a[30005];

int main()
{
int i,t,n,m,ans;
bool s;
scanf("%d",&t);
while(t--)
{
ans=1;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
m=a[1];
s=true;
for(i=2;i<=n;i++)
{
if(m<a[i]&&s)
m=a[i];
else if(m>a[i]&&!s)
m=a[i];
else if(m>a[i]&&s)
{
m=a[i];
s=false;
ans++;
}
else if(m<a[i]&&!s)
{
m=a[i];
s=true;
ans++;
}
}
printf("%d/n",ans);
}
return 0;
}


02-03 803

08-12 701

10-09 822

07-29 968

03-26 441

07-19 908

10-18 830

12-04 2251

09-02 268

11-30 603