LeetCode OJ - Best Time to Buy and Sell Stock III

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).


考虑数组[1,2,4,2,5,7,2,4,9,0]


分析:考虑了半天终于有思路了,类似于Best Time to Buy and Sell Stock I,将数字分为两个区间[0, i]和[i+1 , n-1],分别求出两个区域的最大收益并相加即可,用迭代求出最后的收益。

方法一:i 取值选在每次的波峰位置,接着在[i+1 , n-1]中找出最大收益,时间复杂度为O(n^2)

方法二:对于每一个i求出 [0, i]最大收益front[i], [i+1, n-1]最大收益back[i], 求出max{font[i] + back[i]},这里有一些无效计算但是时间复杂度为O(n)。

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        int len = prices.size();
        if(len < 2) return 0;
        int *front = new int[len]; 
        int *back = new int[len];
        
        memset(front, 0, len * sizeof(int));
        memset(back, 0, len * sizeof(int));

        int minprice = prices[0];
        for(int i = 1; i < len; i++) {
            front[i] = prices[i] - minprice;
            minprice = min(minprice, prices[i]);
        }
        
        int maxprice = prices[len - 1];
        for(int i = len - 2; i >= 0; i--) {
            back[i] = max(back[i+1], maxprice - prices[i+1]);   //back[i+1]代表历史最大
            maxprice = max(maxprice, prices[i+1]);
        }

        int ret = 0;
        for(int i = 0; i < len; i++) {
            ret = max(ret, front[i] + back[i]);
        }
        return ret;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值