Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
考虑数组[1,2,4,2,5,7,2,4,9,0]
分析:考虑了半天终于有思路了,类似于Best Time to Buy and Sell Stock I,将数字分为两个区间[0, i]和[i+1 , n-1],分别求出两个区域的最大收益并相加即可,用迭代求出最后的收益。
方法一:i 取值选在每次的波峰位置,接着在[i+1 , n-1]中找出最大收益,时间复杂度为O(n^2)
方法二:对于每一个i求出 [0, i]最大收益front[i], [i+1, n-1]最大收益back[i], 求出max{font[i] + back[i]},这里有一些无效计算但是时间复杂度为O(n)。
class Solution {
public:
int maxProfit(vector<int> &prices) {
int len = prices.size();
if(len < 2) return 0;
int *front = new int[len];
int *back = new int[len];
memset(front, 0, len * sizeof(int));
memset(back, 0, len * sizeof(int));
int minprice = prices[0];
for(int i = 1; i < len; i++) {
front[i] = prices[i] - minprice;
minprice = min(minprice, prices[i]);
}
int maxprice = prices[len - 1];
for(int i = len - 2; i >= 0; i--) {
back[i] = max(back[i+1], maxprice - prices[i+1]); //back[i+1]代表历史最大
maxprice = max(maxprice, prices[i+1]);
}
int ret = 0;
for(int i = 0; i < len; i++) {
ret = max(ret, front[i] + back[i]);
}
return ret;
}
};