多边形游戏问题

转自  https://blog.csdn.net/u013240812/article/details/23214239

#include<iostream> 
using namespace std;  
int m[100][100][100]; 
char op[100];//运算符 
int v[100];//顶点数值  
void minmax(int n,int i,int s,int j,int& minf,int& maxf,int m[100][100][100],char op[100])
{ 
    int e[4]; 
    int a=m[i][s][0],b=m[i][s][1]; 
    int r=(i+s-1)%n+1,c=m[r][j-s][0],d=m[r][j-s][1]; 
    if(op[r]=='t') 
    { 
        minf=a+c; 
        maxf=b+d; 
    } 
    else  
    { 
        e[1]=a*c; 
        //此链最后一次合并运算在op[i+s]处发生(1<=s<=j-1),则可在op[i+s]处将链分割成两个 
        //子链,p(i,s),p(i+s,j-s),设m1是对子链 p(i,s)的任意一种合并方式得到的值,而a,b分别是在所有可能的合并 
        //中得到的最小值和最大值,同理对m2,c,d;依此定义,a<=m1<=b,c<=m2<=d;  
        //由于子链 p(i,s),p(i+s,j-s)的方式决定了 p(i,s)在op[i+s]处断开后的合并方式,在 op[i+s]处合并后其值为 
        //m=(m1)op[i+s](m2) 
        //满足最优子结构性质,主链的最大值 最小值由子链的最大值最小值得到,由主链最优性可推出子链最优性  
        e[2]=a*d; 
        e[3]=b*c; 
        e[4]=b*d; 
        minf=e[1];maxf=e[1]; 
        for(int r=2;r<5;r++) 
        { 
            if(minf>e[r])minf=e[r]; 
            if(maxf<e[r])maxf=e[r];  
        } 
    } 
} 
int polymax(int n) 
{ 
    int minf,maxf; 
    for(int j=2;j<=n;j++) 
    { 
        for(int i=1;i<=n;i++) 
        { 
            for(int s=1;s<j;s++) 
            { 
                minmax(n,i,s,j,minf,maxf,m,op); 
                if(m[i][j][0]>minf)m[i][j][0]=minf; 
                if(m[i][j][1]<maxf)m[i][j][1]=maxf; 
            } 
        } 
    } 
    int temp=m[1][n][1]; 
    for(int i=2;i<=n;i++) 
    if(temp<m[i][n][1])temp=m[i][n][1]; 
    return temp; 
}  
int main() 
{ 
    int n;//顶点个数   
    while(cin>>n) 
    { 
        for(int i=1;i<=n;i++) 
        { 
            cin>>v[i]>>op[i]; 
        } 
        cout<<polymax(n)<<endl; 
    } 
}  

 

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页