题1
设在15只同类型零件中有2只为次品,在其中取3次, 每次任取1只, 作不放回抽样, 以 X 表示取出的次品个数, 求:
(1)X的分布律;(2)X的分布函数并作图; (3)P{X≤0.5}, P{1<X≤1.5}, P{1≤X≤1.5},
P{1<X<2}.
解:
注意: 分布函数作图是比较简单的, 解答出来是为了解决对 概率论作图 感到陌生的问题,
当画出图后,就明白怎么回事,怎样去作图了。
要特别注意区分: F(2) ≠ P{X=2}
因为F(2)=P{x≤2} , 这个值一般是大于P{X=2}, 也就是说 P{X≤2} > P{X=2},
P{X=2}只是一个点的概率值, P{X≤2} 却是数轴上从 -∞ 到2 很长一段的概率值!!
题2
题 3
将3只球随机地放入4个杯子中去, 求杯子中球的最大个数分别为1, 2, 3的概率。
解: 此题乍一看,可能有点懵, 是从球的角度出发 还是 从杯子的角度出发?
我想说:我们不要怕复杂, 有的人一看到这类型题, 就发怵,就害怕, 因为不会不懂,
没什么要怕的! 越是复杂越要沉着应对, 越要静下心来学, 越要掌握!!!
~~~~~
本题,每个杯子的容量不限,第1个球有4种放法(不存在不放进任何杯子的情况),第2个球有4种放法,第3个球有4种放法, 也就是说只存在有的杯子没球。
总共的放法为N(S) = 4 x 4 x 4 =64. 这是样本空间的总数,清楚这点是关键。
设事件A为杯子中球的最大个数为1,3个球要往4个杯子里面放,
第一步 就是从4个杯子选出3个杯子,为,
第二步 选好了杯子,就要放球进去,第1个球有3种放法,第2个球只有2种放法, 第3个球只有1种放法。
所以事件A的放法为:=24, P(A) =
.
设事件B为杯子中球的最大个数为2, 3个球要往4个杯子里面放,虽然实际上只放到2个杯子中,
第一步 从4个杯子先选出放2个球的杯子,为 4种,再选出放1个球的杯子,为3种
第二步 开始放球进去,要放2个球的杯子放球有 =3种放法; 放1个球的杯子,只能从3个球选走2个球后的1个球,放进去,只有1种放法。
所以事件B的放法 4x3x3x1 = 36. P(B) =
设事件C为杯子中球的最大个数为3, 3个球要往4个杯子里面放,虽然实际上只放到1个杯子中,
第一步 从4个杯子选出放3个球的杯子,为4种;
第二步 开始放球进去,要放3个球的杯子放球只有1种;
所以事件C的放法 4x1 = 4. P(C) =
结论: 杯子中球的最大个数为1的概率为3/8,
杯子中球最大个数为2的概率为9/16,
杯子中球最大个数为3的概率为1/16.
题4
设随机变量X的密度函数为
,对X进行三次独立重复观测, Y表示三次独立重复观测中事件{X< }出现的次数, 求P{Y
1}
解: Y出现的次数 可能为 0, 1,2,3. Y符合二项分布。
P{X< } =
,
三次独立重复的事件{X< }出现的次数 Y~B(3,
)
P{Y1} = 1 - P{Y=0} = 1-
= 1 -
=
题目4涉及到离散型也涉及到连续型,具有代表性,是一个很适合考试的题目。
题 5 2014.4 分值10分 关于二项分布
某产品的次品率为0.1, 检验员每天抽检 10 次, 每次随机取 3 件 产品进行检验, 且不存在误检现象, 设产品是否为次品相互独立, 若在一次检验中检出次品多于 1 件, 则调整设备, 以 X 表示一天调整设备的次数, 求 E(X)
解: 本题,要审清题意, 每天10次, 每次取3件检验,
在每次检验中, 属于独立重复实验, 为二项分布, 设Y为每次检验检出次品的分布,有
Y ~ B(3, 0.1) ,
P{Y > 1} = 1- P{Y=0}- P{Y=1} = 1- ,
所以 X ~ B(10, 0.028), E(X) = np = 10 * 0.028 = 0.28.
总结: 本题要清楚 X 事件的含义, X也是独立重复实验, 触发 X 事件就要先得出 概率。