xindoo
码龄13年
关注
提问 私信
  • 博客:1,510,718
    社区:1,231
    问答:2,538
    动态:10,417
    视频:10,736
    1,535,640
    总访问量
  • 355
    原创
  • 2,752
    排名
  • 21,514
    粉丝

个人简介:10年技术博主,博客专家,曾就职于阿里 小米,目前任贝壳资深工程师。拥有运维、搜索广告、后端业务相关工作经验,擅长Java、Lniux、Redis……

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2011-11-15
博客简介:

xindoo

博客描述:
面向情怀编程
查看详细资料
  • 原力等级
    当前等级
    7
    当前总分
    4,004
    当月
    38
个人成就
  • Java领域优质创作者
  • 博客专家认证
  • 获得2,409次点赞
  • 内容获得789次评论
  • 获得5,567次收藏
  • 代码片获得10,683次分享
创作历程
  • 22篇
    2024年
  • 30篇
    2023年
  • 22篇
    2022年
  • 26篇
    2021年
  • 40篇
    2020年
  • 23篇
    2019年
  • 22篇
    2018年
  • 30篇
    2017年
  • 31篇
    2016年
  • 6篇
    2015年
  • 17篇
    2014年
  • 132篇
    2013年
成就勋章
TA的专栏
  • 10x程序员
    16篇
  • openai
    6篇
  • AI
    1篇
  • AIGC
    1篇
  • 管理
    1篇
  • LangChain
    2篇
  • ChatGPT
    1篇
  • Redis
    2篇
  • HTTP
    2篇
  • netty
    2篇
  • Redis源码剖析
    12篇
  • 面试题精选
    19篇
  • 高效工程师系列
    5篇
  • 总结
    11篇
  • Java
    25篇
  • Java源码解析
    9篇
TA的推广
兴趣领域 设置
  • Java
    javaspringkafkajvmguava
  • 大数据
    redis
  • 后端
    spring架构
  • 服务器
    linux
TA的社区
  • XINDOO的技术社区
    2 成员 12 内容
    创建者
公告
我们翻译了 谷歌工程实践欢迎查阅并加星,个人其他项目有 Redis源码剖析, Java正则引擎 …… 更多见我 Github

微信公众号
20190512190712482.jpg

专注于个人成长,热衷于探索好玩有趣的事,平时也会分享下自己的见闻,公众号会更倾向于非计算机技术。

创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 视频
  • 关注/订阅/互动
  • 问答
  • 帖子
  • 收藏
搜TA的内容
搜索 取消

为什么AI智能体需要工作流

善于沟通的人能充分发挥 LLM 的潜力,因为和LLM沟通和与人沟通并没有本质的区别。同样,那些擅长解决复杂问题的人往往具备出色的系统思维,能设计出高效实用的工作流程,将复杂任务分解为可管理的步骤。最后总结下本文的核心观点,在AI应用中,合理的工作流设计是提升系统效能的关键,通过任务的水平拆分和垂直拆分,我们可以构建出既能处理大规模数据又能保证质量的混合工作流体系。工作流不仅仅是一种技术实现方式,更是一种系统化思维的体现,它能帮助我们更好地应对复杂的AI应用场景,实现更高效的任务处理和更可靠的质量控制。
原创
发布博客 2024.12.21 ·
679 阅读 ·
25 点赞 ·
0 评论 ·
11 收藏

如何用GPT-4o解读视频

过将视频拆分为关键帧并使用GPT-4o进行分析,可以实现对视频内容的解读。该方法包括提取视频帧、将其转换为base64编码,并利用GPT-4o生成详细的剧情描述。实验结果表明,该方法有效且展示了GPT-4o在多模态任务中的能力。
原创
发布博客 2024.11.17 ·
1363 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

json命令行处理神器jq介绍

jq是一个强大的命令行工具,用于处理JSON数据,能够简化数据过滤、转换和操作过程。文中介绍了jq的基本用法,包括提取字段、数组操作、过滤和数据转换,以及一些高级特性如条件语句、自定义函数和数学运算。jq的灵活语法和链式操作使得处理复杂JSON数据变得高效,适合开发者和数据分析师使用。
原创
发布博客 2024.11.03 ·
896 阅读 ·
19 点赞 ·
0 评论 ·
17 收藏

OpenAI的结构化浅析

通过这篇文章,我们了解了OpenAI结构化输出的基本用法,并深入探讨了其可能的实现原理。希望这些内容对大家有所帮助。结构化输出功能无疑是AI与现有系统对接的关键依赖,因为目前所有系统的输入都有特定的格式要求。在没有结构化输出能力之前,我们不得不使用各种奇技淫巧来完成数据格式化。显然,有了结构化输出,这部分工作就会简单得多。不过,我还要提醒大家一点:不要把结构化输出当成万能工具。俗话说,“拿着锤子看什么都像钉子”,可别落入这个陷阱。
原创
发布博客 2024.10.27 ·
1188 阅读 ·
27 点赞 ·
0 评论 ·
15 收藏

从大模型的原理到提示词优化

AI提示词是引导AI生成特定输出的指令或问题,掌握有效构建提示词对获取理想结果至关重要。提示词通过提供丰富的上下文信息,影响LLM的输出质量,技巧包括设定角色、使用示例、任务拆解和思维链等。这些方法旨在增强上下文信息,从而提高人机交互的准确性和效率。与LLM的沟通类似于人与人之间的交流,需要清晰表达和适当的反馈。
原创
发布博客 2024.10.26 ·
985 阅读 ·
18 点赞 ·
0 评论 ·
16 收藏

从经济学原理看团队分工合作

但是,凡事有利就有弊端,比较优势的应用明显会鼓励明确分工,这个理论也印证了亚当斯密分工制的有效性,所以我认为其弊端也来自于分工制度,职责过度的单一话,虽然可以明显天生效率,但也限制了个人全方位的发展,尤其是在当今迅速变化的社会中,身兼多职才更可能活下去,毕竟你今天可能干这这个,明天就要被迫去干别的事了。相反,Ruby生产1份土豆的时间可以生产0.5份牛肉,Frank则只能生产0.25份,所以Ruby在生产牛肉上有相对优势。即使Ruby在两种商品的生产上都更强,Frank在生产土豆上的相对效率更高。
原创
发布博客 2024.10.13 ·
1002 阅读 ·
6 点赞 ·
1 评论 ·
10 收藏

[翻译]关于人工智能的30个思考

AI不会直接夺走你的工作,但懂得运用AI的人可能会。更可能的情况是,会用AI的你将取代不会用AI的你。那些夸张的宣传并非针对普通人,而是为了吸引投资,维持AI市场的繁荣。AI的价值很高,但开发成本也不菲。,作者表述了自己关于人工智能的30个观点,部分观点还是很新颖的,特搬运翻译过来。AI就像政治,人们选定立场后,就难以接受新信息,他们被困在了自己的部落认同中。少数人热爱AI,少数人痛恨AI,绝大多数人要么漠不关心,要么根本不了解。我相信那些AI末日论者大多是真诚的,尽管他们的观点独特,表达方式激进。
翻译
发布博客 2024.10.13 ·
68 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

从马斯洛需求层次理论谈职场激励

我认为从员工个体的需求出发做管理来达成组织或者公司的目标,才是公司和员工双赢的方式。如果公司只是为了单纯达成自己的盈利目标,利用大家的职场“生理需求”或则“安全需求”去压迫员工,比如通过不断试探员工的需求下限来克扣员工的福利待遇、个人时间,这种行为本质上和奴隶主没啥区别,如果你遇到这种公司能跑则跑。反过来,如果公司在利用“归属需求” “尊重需求” “自我实现” 这些高层层次的需求来激励你,那么说明你在一个比较好的公司,这两年能苟则苟。
原创
发布博客 2024.09.01 ·
1856 阅读 ·
26 点赞 ·
0 评论 ·
16 收藏

知识与智慧

自从我上大学以来,知识的获取就很方便了,只要你掌握一些互联网信息检索的技巧,刹那间就可以获取海量的知识,而这两年AI大模型的诞生,你甚至不需要技巧就可以获取海量知识,我们比以往任何时候都更容易获取知识。然而,正如我们在程序员的世界里所看到的,仅仅拥有知识是远远不够的。真正的挑战在于如何将这些知识转化为智慧,并在复杂多变的职场环境中灵活运用。知识就像是我们手中的工具箱,里面装满了各种编程语言、框架和技术;而智慧则是知道何时、如何使用这些工具来解决实际问题的能力。它是在无数次的实践、思考和反思中逐渐积累而成的。
原创
发布博客 2024.08.12 ·
601 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

如何使用大语言模型绘制专业图表

Mermaid.js 是一个强大的基于文本的图表生成工具,它通过使用类似Markdown的语法,可以通过简单的文本描述来生成复杂的图表,完全不依赖于繁琐的图形编辑软件。这极大地简化了图表的创建过程,尤其是很多Markdown渲染软件已经完全集成了Mermaid,完全可以做到仅使用一个Markdown编辑器完成写作和绘图的工作。流程图(Flowcharts):用于展示过程或系统的操作流程。序列图(Sequence diagrams):适合描述对象或参与者之间的交互序列。
原创
发布博客 2024.07.22 ·
1926 阅读 ·
26 点赞 ·
0 评论 ·
28 收藏

大模型价格战的风还是吹到了国外,果然中国就是世界卷王。

发布动态 2024.07.19

两个开源项目打造自己的大模型聚合平台

以上就是我目前自建大模型平台的方案了,两个开源软件的安装方式在各自项目里都有,可以自行查阅,我这里就不再赘述了。我自己其实是购买了阿里云5年的2c4g的服务器(一次性投入2.6k),然后用docker的方式安装了上面这两个软件,不过后续也不需要每年花1.5k买poe或者gpt的会员服务了,只需要按token使用量付费给大模型服务商即可,我自己估算如果日常使用国内高性价比模型的话,偶尔特殊任务用下贵的模型,每个月花费最多也就几块钱,相当之划算了。
原创
发布博客 2024.06.09 ·
2013 阅读 ·
13 点赞 ·
0 评论 ·
16 收藏

我让gpt4o给我推荐了一千多次书 得到了这些数据

事情是这样的,我们公司不是有个读书小组嘛,但是今年大家都忙于工作,忽视了读书这件事,所以我就想着搞个群机器人,让它明天定时向群里推荐一本书,用来唤起大家对读书的兴趣。但在调试的过程中就发现gpt4o老喜欢推荐同样的几本书,这可就勾起我的好奇心了,是不是gpt4o就只知道推荐那几本,正好周末有空,我就斥巨资调用gpt4o的接口让它给我推荐书,调用1000次+,发现gpt4o最喜欢的书是…… 具体让我们来看下推荐结果的简单分析。
原创
发布博客 2024.05.26 ·
992 阅读 ·
9 点赞 ·
0 评论 ·
15 收藏

当下性价比最高的大语言模型DeepSeek-V2-Chat

前一段时间,DeepSeek宣布1M的token只需要1块钱(人民币),率先打响了LLM价格战的第一枪,紧随其后,智谱宣布其旗下的GLM-3-Turbo也只需要1块钱(批处理只需要5毛),然后前两天字节开发布会,宣布豆包只需要8毛钱/M,国内几家公司纷纷卷大模型的价格,要知道现在OpenAI的gpt-4o需要36¥(5$),而gpt-3.5-turbo还需要3.6¥(0.5$),同水平的模型OpenAI算比较便宜的。这三者里当前是豆包价格最低,性能的话我们就参考CompassRank的评分榜。
原创
发布博客 2024.05.19 ·
788 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

如何在LangChain的agent中记录对话历史

LangChain在早期曾推迟过Memory模块,但Memory模块目前被官方标记为beta版本,说是并为这边好投入生产,而且也不支持最新的LCEL语法,但是ChatMessageHistory这个功能是个例外,它已经支持LCEL并且基本可以用在生产上了,所以我们今天说下如何使用ChatMessageHistory让我们的agent记录下对话历史,实现多轮对话。首先还是来创建基本的agent,这里我们就创建一个简单的对话agent,如果你想创建具备某些功能的复杂agent,可以参考我之前两篇实践文章。
原创
发布博客 2024.05.12 ·
2188 阅读 ·
8 点赞 ·
1 评论 ·
8 收藏

用LangChain打造一个可以管理日程的智能助手

那么接下来的问题就是如何让GPT能够查询和操作这个表了。这里我们直接使用了LangChain的@tool装饰器,讲schedules表的基本操作设置为GPT可以识别的接口,当然使用OpenAI的纯原始接口也是可以实现的(参加我之前的文章OpenAI的多函数调用),就是代码量相对会多很多。具体的代码如下,这里我定义了对schedules表的增、删、查的功能。""" 连接到数据库 """@tool""" 新增日程,比如2024-05-03 20:00:00, 周会 """@tool。
原创
发布博客 2024.05.04 ·
1390 阅读 ·
18 点赞 ·
0 评论 ·
32 收藏

用Langchain创建一个可以总结网页内容的Agent

我们首先就是要定义个可以加载到网页内容的工具,这次我们直接使用LangChain提供好的WebBaseLoader。另外借助LangChain的装饰器@tool,我也仅需要正常写一个函数并表明出入参类型和功能即可,不用提供像之前那样复杂的函数定义schema。@tool"""抓取url对应网页的内容"""
原创
发布博客 2024.05.02 ·
909 阅读 ·
14 点赞 ·
0 评论 ·
21 收藏

推荐一个好用的命令行工具ShellGPT

由于文章篇幅的原因,我挑选了大部内容做了介绍,当然ShellGPT还有一些其他的细节需要大家自行去探索。其所有的参数都可以通过分类参数类型描述默认值基本选项prompt[PROMPT]用于生成完成的提示。--modelTEXT使用的大型语言模型。生成输出的随机性。0.0--top-p限制最高可能的token。1.0--md美化markdown输出。md--editor打开$EDITOR来提供提示。no-editor--cache缓存完成结果。cache--version显示版本。
原创
发布博客 2024.04.30 ·
2319 阅读 ·
19 点赞 ·
0 评论 ·
40 收藏

我的CSDN 4096创作纪念日

我高中时候语文都是属于偏差的那种,作文也是很普通的水平,而且我性格偏内向,很长一段时间都不怎么会表达(高考的时候800字的作文都不知道怎么写)。但坚持写博客10年多,给我一个主题(前提是我熟悉的),我坐下来很容易写几千字,而且还能保证质量部那么水,反思10年前和现在的变化,我总结是有两方面的因素让我改变这么多,一是疯狂阅读,二就是持续写作。阅读主要是输入,看到别人如何总结和表达,以及汲取更多的信息。
原创
发布博客 2024.04.01 ·
2612 阅读 ·
35 点赞 ·
4 评论 ·
32 收藏

关于ffmpeg height not divisible by 2的错误

例如,如果有一个奇数宽度的视频帧,最右边会有一个无法形成完整块的列像素。的特殊之处在于,它会确保计算出的宽度或高度是偶数,这是为了满足某些视频编码器的要求,它们需要偶数的分辨率尺寸。这对于编码像H.264这样的视频时特别重要,因为(如前所述)这些编码器使用基于块的编码算法,其要求块的尺寸(通常是16×16像素或其它偶数尺寸)能够完全适应视频帧的尺寸。解决方案当然很简单,那就是将分辨率强行指定成偶数即可,在当我思索难道要放弃-1这个好用的自适应参数,在指定宽为1280时,自己去计算出一个高来的时候。
原创
发布博客 2024.03.17 ·
899 阅读 ·
6 点赞 ·
0 评论 ·
7 收藏
加载更多