自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

转载 2020年408计算机学科专业基础综合考试大纲

2020年408考纲I 考试性质II 考查目标一、试卷满分及考试时间二、答题方式三、试卷内容结构四、试卷题型结构IV 考查内容数据结构一、线性表二、栈、队列和数组三、树与二叉树四、图五、查找六、排序计算机组成原理一、计算机系统概述二、数据的表示和运算三、存储器层次结构四、指令系统五、中央处理器(C...

2019-11-26 21:17:02

阅读数 103

评论数 0

原创 python3机器学习经典算法与应用之判断机器学习算法的性能(一)

python机器学习算法应用性能判断 性能判断 我们使用训练集数据进行训练得到机器学习模型,但是模型对于新数据的标签的预测准确度是我们十分关心的。计算模型的损失用来衡量一个模型的性能好坏。 训练集数据的分离,将原本的训练数据分为训练集和验证集两部分,但其实还应该再分为测试集一部分。将原本根据训练数...

2019-11-18 20:12:28

阅读数 14

评论数 0

原创 python3机器学习经典算法与应用之scikit-learn中的机器学习算法封装

python机器学习算法应用标题 标题

2019-11-18 19:10:30

阅读数 18

评论数 0

原创 python3机器学习经典算法与应用之K近邻算法

python机器学习算法应用k近邻算法 k近邻算法 优点:算法思想简单、应用数学知识少、可以解释机器学习算法使用过程中的很多细节问题、更完整地刻画机器学习应用的流程。很适合入门。 思想:已经知道的数据点分布在数据空间中。如何判断新加入的数据点的类别呢? 首先选定一个k值(根据经验取得),在空间中寻...

2019-11-13 19:05:30

阅读数 31

评论数 0

原创 python3机器学习经典算法与应用之读取数据和简单的数据探索

python机器学习算法应用初见sklearn 初见sklearn sklearn中的datasets是sklearn封装好的一些数据集,可以用来练手。 其中iris是鸢尾花的数据集。sklearn封装的数据集是一种特殊的数据结构,可以粗略理解为字典。调用keys()方法可以查看数据集的键分别代表...

2019-11-12 23:14:54

阅读数 7

评论数 0

原创 python3机器学习经典算法与应用之matplotlib

python机器学习算法应用matplotlib matplotlib matplotlib是用于图形可视化的库。 事实简单的绘图处理,我们需要的只是matplotlib中的pyplot子模块。 首先我们先导入库,通常我们将matplotlib简化为mpl,其子模块pyplot简化为plt。 然后...

2019-11-12 22:40:39

阅读数 19

评论数 0

原创 python3机器学习经典算法与应用之Numpy.array——Fancy Indexing、Compare

python机器学习算法应用Fancy Indexing(花式索引)numpy.array比较Fancy Indexing和Compare结合 Fancy Indexing(花式索引) 正常使用索引方式可以随机访问任意一个元素,也可以使用切片的形式访问一段数据元素,或者一段数据元素中满足步长要求的...

2019-11-12 14:14:50

阅读数 13

评论数 0

原创 python3机器学习经典算法与应用之Numpy.array索引

python机器学习算法应用索引排序和使用索引 索引 上一节我们知道使用numpy.min()函数可以获得一个array中的最小值。通过numpy.argmin()可以获得最小值的索引。 使用numpy.max()函数可以获得一个array中的最大值。通过numpy.argmax()可以获得最大...

2019-11-11 21:57:56

阅读数 17

评论数 0

原创 python3机器学习经典算法与应用之Numpy.array聚合运算

python机器学习算法应用聚合操作 聚合操作 聚合操作者:将一组值变成一个值。最经典的聚合就是求和操作。 首先创建一个随机向量,然后使用sum()函数和np.sum()函数做加和运算。sum()函数和np.sum()函数最大的区别就在于效率。 很明显可以看出来,np.sum()函数的运行速度更...

2019-11-11 18:42:12

阅读数 16

评论数 0

原创 python3机器学习经典算法与应用之Numpy.array运算

python机器学习算法应用矩阵数乘Universial Functions矩阵运算矩阵转置向量和矩阵的运算 矩阵数乘 如果自己去写for循环创建数乘之后的列表,效率很低,花费的时间代价很大。 可以使用numpy.array()来创建数乘结果矩阵。 注:绝对不可以使用直接使用一个数去直接乘一个普...

2019-11-11 18:10:40

阅读数 21

评论数 0

原创 python3机器学习经典算法与应用之Numpy.array基本操作(二)

python机器学习算法应用合并操作numpy.concatenate()分隔操作numpy.split() 合并操作 numpy.concatenate() 使用numpy.concatenate()函数可以将矩阵进行拼接,将拼接的矩阵(或数组)组织成一个列表作为参数传递给concatenate...

2019-11-10 20:08:05

阅读数 21

评论数 0

原创 python3机器学习经典算法与应用之Numpy.array基本操作(一)

python机器学习算法应用Numpy.array的基本操作基本属性numpy.array数据访问1.方括号[]+索引的方式2.切片reshape()方法 Numpy.array的基本操作 首先创建一个一位数组x,再创建一位数组X,通过reshape()方法调整数组的维度。 基本属性 属性ndi...

2019-11-10 16:36:15

阅读数 18

评论数 0

原创 python3机器学习经典算法与应用之numpy

python机器学习算法应用

2019-11-10 15:37:22

阅读数 16

评论数 0

原创 杀千刀的Dev-C++的调试功能小结

杀千刀的Dev-C++的功能小结 注意:红色矩形框的编译器选择,我第一次去天大考csp的时候,首先打开dev-c++之后发现无法使用调试功能,随即选择了debug版本,调试功能才能够继续使用。 另外,在调试的时候尽量不要使用“添加查看”我发现添加查看后,单步执行就卡住了—卡住了—住了—了,所以在...

2019-11-04 21:51:45

阅读数 66

评论数 1

原创 已知二叉树的两种遍历序列输出求另一种遍历序列

已知二叉树的后序与中序序列输出前序序列(先序) 分析:后序序列的最后一个总是根结点,在中序序列中找到这个根结点,就可以将中序序列分割为两部分,左边是左子树,右边是右子树。先序序列的输出顺序是根–>左子树–>右子树。假设后序序列存放在post[ ]数组中,中序序列存放在in[ ]数组中,...

2019-11-04 21:47:48

阅读数 24

评论数 0

原创 二叉搜索树前序序列转后序序列(或相反)

二叉搜索树前序序列转后序序列(或相反) 这篇文章转自柳婼大神的博客。 普通的二叉树知道前序遍历序列或后序遍历序列和中序遍历序列后可以转换为另一种遍历序列,根据前序或后序遍历序列找根,再根据中序遍历序列划分左右子树,再获取左子树和右子树的根。 但二叉排序树比较特殊,因为二叉排序树的特性(左子树的所有...

2019-11-04 21:43:30

阅读数 67

评论数 0

原创 【编程tips1】

【编程tips】 map的find()方法 find函数来定位数据出现位置,它返回的一个迭代器,当数据出现时,它返回数据所在位置的迭代器,如果map中没有要查找的数据,它返回的迭代器等于end函数返回的迭代器。 格式: map<typename1,typename2>::itera...

2019-11-04 21:38:36

阅读数 12

评论数 0

原创 【C++ string小贴士总结】

【C++ string小贴士总结】 数字转string类型 头文件#include 从C++11开始引入以下函数 std::to_string(int) int型转字符串 std::to_string(long) long型转字符串 std::to_string(lon...

2019-11-04 21:37:19

阅读数 17

评论数 0

原创 google机器学习速成教程学习笔记

Machine Learning notes监督式机器学习线性回归、训练和损失迭代方式降低损失降低损失 (Reducing Loss):梯度下降法使用TensorFlow泛化训练集和测试集验证集表示特征工程将原始数据映射到特征良好特征的特点清理数据缩放特征值处理极端离群值分箱清查特征组合特征组...

2019-11-03 09:53:59

阅读数 8

评论数 0

提示
确定要删除当前文章?
取消 删除