Android Matrix理论与应用详解

http://zensheno.blog.51cto.com/2712776/513652

Matrix学习——基础知识

以前在线性代数中学习了矩阵,对矩阵的基本运算有一些了解,前段时间在使用GDI+的时候再次学习如何使用矩阵来变化图像,看了之后在这里总结说明。

首先大家看看下面这个3 x 3的矩阵,这个矩阵被分割成4部分。为什么分割成4部分,在后面详细说明。

clip_image001

首先给大家举个简单的例子:现设点P0(x0, y0)进行平移后,移到P(x,y),其中x方向的平移量为△x,y方向的平移量为△y,那么,点P(x,y)的坐标为:

x = x0  + △x 
y = y0  + △y

采用矩阵表达上述如下: 
clip_image002

上述也类似与图像的平移,通过上述矩阵我们发现,只需要修改矩阵右上角的2个元素就可以了。

我们回头看上述矩阵的划分: 
clip_image003

为了验证上面的功能划分,我们举个具体的例子:现设点P0(x0 ,y0)进行平移后,移到P(x,y),其中x放大a倍,y放大b倍,

矩阵就是:clip_image004,按照类似前面“平移”的方法就验证。

图像的旋转稍微复杂:现设点P0(x0, y0)旋转θ角后的对应点为P(x, y)。通过使用向量,我们得到如下:

x0 = r cosα 
y0 = r sinα

x = r cos(α+θ) = x0 cosθ - y0 sinθ 
y = r sin(α+θ) = x0 sinθ + y0 cosθ

于是我们得到矩阵:clip_image005

如果图像围绕着某个点(a ,b)旋转呢?则先要将坐标平移到该点,再进行旋转,然后将旋转后的图像平移回到原来的坐标原点,在后面的篇幅中我们将详细介绍。

  Matrix学习——如何使用Matrix

上一篇幅 Matrix学习——基础知识,从高等数学方面给大家介绍了Matrix,本篇幅我们就结合Android 中的android.graphics.Matrix来具体说明,还记得我们前面说的图像旋转的矩阵:

clip_image005[1]

从最简单的旋转90度的是:

clip_image006

在android.graphics.Matrix中有对应旋转的函数: 
Matrix matrix = new Matrix(); 
matrix.setRotate(90); 
Test.Log(MAXTRIX_TAG,”setRotate(90):%s” , matrix.toString());

clip_image007

查看运行后的矩阵的值(通过Log输出):

clip_image008

与上面的公式基本完全一样(android.graphics.Matrix采用的是浮点数,而我们采用的整数)。

有了上面的例子,相信大家就可以亲自尝试了。通过上面的例子我们也发现,我们也可以直接来初始化矩阵,比如说要旋转30度:

clip_image010

前面给大家介绍了这么多,下面我们开始介绍图像的镜像,分为2种:水平镜像、垂直镜像。先介绍如何实现垂直镜像,什么是垂直镜像就不详细说明。图像的垂直镜像变化也可以用矩阵变化的表示,设点P0(x0 ,y0 )进行镜像后的对应点为P(x ,y ),图像的高度为fHeight,宽度为fWidth,原图像中的P0(x0 ,y0 )经过垂直镜像后的坐标变为(x0 ,fHeight- y0); 
x = x0 
y = fHeight – y0 
推导出相应的矩阵是:

clip_image011

final float f[] = {1.0F,0.0F,0.0F,0.0F,-1.0F,120.0F,0.0F,0.0F,1.0F}; 
Matrix matrix = new Matrix(); 
matrix.setValues(f);

按照上述方法运行后的结果: 
clip_image012

至于水平镜像采用类似的方法,大家可以自己去试试吧。

实际上,使用下面的方式也可以实现垂直镜像: 
Matrix matrix = new Matrix(); 
matrix.setScale (1.0,-1.0); 
matrix.postTraslate(0, fHeight);

这就是我们将在后面的篇幅中详细说明。

  Matrix学习——图像的复合变化

Matrix学习——基础知识篇幅中,我们留下一个话题:如果图像围绕着某个点P(a,b)旋转,则先要将坐标系平移到该点,再进行旋转,然后将旋转后的图像平移回到原来的坐标原点。

我们需要3步:

1. 平移——将坐标系平移到点P(a,b);

2. 旋转——以原点为中心旋转图像;

3. 平移——将旋转后的图像平移回到原来的坐标原点;

相比较前面说的图像的几何变化(基本的图像几何变化),这里需要平移——旋转——平移,这种需要多种图像的几何变化就叫做图像的复合变化。

设对给定的图像依次进行了基本变化F1、F2、F3…..、Fn,它们的变化矩阵分别为T1、T2、T3…..、Tn,图像复合变化的矩阵T可以表示为:T = TnTn-1…T1。

按照上面的原则,围绕着某个点(a,b)旋转θ的变化矩阵序列是:

clip_image013

按照上面的公式,我们列举一个简单的例子:围绕(100,100)旋转30度(sin 30 = 0.5 ,cos 30 = 0.866) 
float f[]= { 0.866F,  -0.5F, 63.4F,0.5F, 0.866F,-36.6F,0.0F,    0.0F,  1.0F }; 
matrix = new Matrix(); 
matrix.setValues(f); 
旋转后的图像如下:

clip_image014

Android为我们提供了更加简单的方法,如下: 
Matrix matrix = new Matrix(); 
matrix.setRotate(30,100,100); 
矩阵运行后的实际结果: 
clip_image015 
与我们前面通过公式获取得到的矩阵完全一样。

在这里我们提供另外一种方法,也可以达到同样的效果: 
float a = 100.0F,b = 100.0F; 
matrix = new Matrix(); 
matrix.setTranslate(a,b); 
matrix.preRotate(30); 
matrix.preTranslate(-a,-b); 
将在后面的篇幅中为大家详细解析

通过类似的方法,我们还可以得到:相对点P(a,b)的比例[sx,sy]变化矩阵

clip_image016

Matrix学习——Preconcats or Postconcats?

从最基本的高等数学开始,Matrix的基本操作包括:+、*。Matrix的乘法不满足交换律,也就是说A*B ≠B*A。

还有2种常见的矩阵:

clip_image017

有了上面的基础,下面我们开始进入主题。由于矩阵不满足交换律,所以用矩阵B乘以矩阵A,需要考虑是左乘(B*A),还是右乘(A*B)。在Android的android.graphics.Matrix中为我们提供了类似的方法,也就是我们本篇幅要说明的Preconcats matrix 与 Postconcats  matrix。下面我们还是通过具体的例子还说明:

clip_image018

通过输出的信息,我们分析其运行过程如下:

clip_image019

看了上面的输出信息。我们得出结论:Preconcats matrix相当于右乘矩阵,Postconcats  matrix相当于左乘矩阵

上一篇幅中,我们说到:

clip_image020

其晕死过程的详细分析就不在这里多说了。

  Matrix学习——错切变换

什么是图像的错切变换(Shear transformation)?我们还是直接看图片错切变换后是的效果:

clip_image021

clip_image022

对图像的错切变换做个总结:

clip_image023

x = x0 + b*y0;

y = d*x0 + y0;

clip_image024

这里再次给大家介绍一个需要注意的地方:

clip_image025

通过以上,我们发现Matrix的setXXXX()函数,在调用时调用了一次reset(),这个在复合变换时需要注意。

  Matrix学习——对称变换(反射)

什么是对称变换?具体的理论就不详细说明了,图像的镜像就是对称变换中的一种。

clip_image026

利用上面的总结做个具体的例子,产生与直线y= – x对称的反射图形,代码片段如下:

clip_image027

当前矩阵输出是:

clip_image028

图像变换的效果如下:

clip_image029


  附:三角函数公式

两角和公式

sin(a+b)=sinacosb+cosasinb

sin(a-b)=sinacosb-sinbcosa 

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(a-b)=(tana-tanb)/(1+tanatanb)

cot(a+b)=(cotacotb-1)/(cotb+cota) 

cot(a-b)=(cotacotb+1)/(cotb-cota)

倍角公式

tan2a=2tana/[1-(tana)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

sin2a=2sina*cosa

半角公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) 

tan(a/2)=(1-cosa)/sina=sina/(1+cosa)

和差化积

2sinacosb=sin(a+b)+sin(a-b)

2cosasinb=sin(a+b)-sin(a-b) )

2cosacosb=cos(a+b)-sin(a-b)

-2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2

cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb

积化和差公式

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(pi/2-a)=cos(a)

cos(pi/2-a)=sin(a)

sin(pi/2+a)=cos(a)

cos(pi/2+a)=-sin(a)

sin(pi-a)=sin(a)

cos(pi-a)=-cos(a)

sin(pi+a)=-sin(a)

cos(pi+a)=-cos(a)

tga=tana=sina/cosa

万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

其它公式

a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]

a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]

1+sin(a)=(sin(a/2)+cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

其他非重点三角函数

csc(a)=1/sin(a)

sec(a)=1/cos(a)

双曲函数

sinh(a)=(e^a-e^(-a))/2

cosh(a)=(e^a+e^(-a))/2

tgh(a)=sinh(a)/cosh(a)


高性能MySQL实战课

05-21
限时福利1:原价 129 元,最后2天仅需 69 元!后天涨价至98元 限时福利2:购课进答疑群专享柳峰(刘运强)老师答疑服务 限时福利3:购课添加助教领取价值 800 元的编程大礼包 为什么需要掌握高性能的MySQL实战? 由于互联网产品用户量大、高并发请求场景多,因此对MySQL的性能、可用性、扩展性都提出了很高的要求。使用MySQL解决大量数据以及高并发请求已经是程序员的必备技能,也是衡量一个程序员能力和薪资的标准之一。 为了让大家快速系统了解高性能MySQL核心知识全貌,我为你总结了「高性能 MySQL 知识框架图」,帮你梳理学习重点,建议收藏! 【课程设计】 课程分为四大篇章,将为你建立完整的 MySQL 知识体系,同时将重点讲解 MySQL 底层运行原理、数据库的性能调优、高并发、海量业务处理、面试解析等。 一、性能优化篇: 主要包括经典 MySQL 问题剖析、索引底层原理和事务与锁机制。通过深入理解 MySQL 的索引结构 B+Tree ,学员能够从根本上弄懂为什么有些 SQL 走索引、有些不走索引,从而彻底掌握索引的使用和优化技巧,能够避开很多实战中遇到的“坑”。 二、MySQL 8.0新特性篇: 主要包括窗口函数和通用表表达式。企业中的许多报表统计需求,如果不采用窗口函数,用普通的 SQL 语句是很难实现的。 三、高性能架构篇: 主要包括主从复制和读写分离。在企业的生产环境中,很少采用单台MySQL节点的情况,因为一旦单个节点发生故障,整个系统都不可用,后果往往不堪设想,因此掌握高可用架构的实现是非常有必要的。 四、面试篇: 程序员获得工作的第一步,就是高效的准备面试,面试篇主要从知识点回顾总结的角度出发,结合程序员面试高频MySQL问题精讲精练,帮助程序员吊打面试官,获得心仪的工作机会。

专为程序员设计的数学课

11-11
<p> 限时福利限时福利,<span>15000+程序员的选择!</span> </p> <p> 购课后添加学习助手(微信号:csdn590),按提示消息领取编程大礼包!并获取讲师答疑服务! </p> <p> <br> </p> <p> 套餐中一共包含5门程序员必学的数学课程(共47讲) </p> <p> 课程1:《零基础入门微积分》 </p> <p> 课程2:《数理统计与概率论》 </p> <p> 课程3:《代码学习线性代数》 </p> <p> 课程4:《数据处理的最优化》 </p> <p> 课程5:《马尔可夫随机过程》 </p> <p> <br> </p> <p> 哪些人适合学习这门课程? </p> <p> 1)大学生,平时只学习了数学理论,并未接触如何应用数学解决编程问题; </p> <p> 2)对算法、数据结构掌握程度薄弱的人,数学可以让你更好的理解算法、数据结构原理及应用; </p> <p> 3)看不懂大牛代码设计思想的人,因为所有的程序设计底层逻辑都是数学; </p> <p> 4)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; </p> <p> 5)想修炼更好的编程内功,在遇到问题时可以灵活的应用数学思维解决问题。 </p> <p> <br> </p> <p> 在这门「专为程序员设计的数学课」系列课中,我们保证你能收获到这些:<br> <br> <span> </span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">①价值300元编程课程大礼包</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">②应用数学优化代码的实操方法</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">③数学理论在编程实战中的应用</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">④程序员必学的5大数学知识</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">⑤人工智能领域必修数学课</span> </p> <p> <br> 备注:此课程只讲程序员所需要的数学,即使你数学基础薄弱,也能听懂,只需要初中的数学知识就足矣。<br> <br> 如何听课? </p> <p> 1、登录CSDN学院 APP 在我的课程中进行学习; </p> <p> 2、登录CSDN学院官网。 </p> <p> <br> </p> <p> 购课后如何领取免费赠送的编程大礼包和加入答疑群? </p> <p> 购课后,添加助教微信:<span> csdn590</span>,按提示领取编程大礼包,或观看付费视频的第一节内容扫码进群答疑交流! </p> <p> <img src="https://img-bss.csdn.net/201912251155398753.jpg" alt=""> </p>
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值