【密码学——基础理论与应用】李子臣编著 第八章 SM2公钥密码算法 课后习题

免责声明

这里都是自己搓或者手写的。
里面不少题目感觉有问题或者我的理解有偏颇,请大佬批评指正!
不带思考抄作业的请自动退出,我的并非全对,仅仅提供思维!

题目



逐题解析

知识前提:模运算的分数怎么转整数?

我知道这一点是卡死很多人的点,但是实际上老师根本就不会讲这个细节,我也不指望他们能理解为什么在这里能卡住学生。但是这里确实,懂得就懂,不懂的其实有人指点一下也能秒懂,但是不懂的也没找到怎么懂的,就一直卡死在这里,形成恶性闭环。(以上均为对大学教学问题本身的虾鸡扒扯的胡话,我实在是忍不了我那个密码学老头)

例1:模为p,形如 \frac{a}{b} 的分数,且满足a<p,b<p,怎么转整数?

我们知道 \frac{a}{b}=a*b^{-1},而在模p的运算下,b^(-1)并不是“b分之一”,而是一个在[0,p)范围内的整数。这个整数设为x,那么满足 b*x \equiv 1 \ (mod \ p),我们解出这个x(不管是暴力还是扩展欧几里得算法,解出来就对了)。

所以, \frac{a}{b} \equiv a*x (mod p)

例2:模为p,形如 \frac{a}{b} 的分数,但是a,b至少有一个大于p,怎么转整数?

这一点其实很好回答。那我问你,比如p=11,a=13,b=14。13%p=2,14%p=3,那么我们转成求2/3就可以了。现在你肯定要问:为什么?

我们先把分母遮掉,就假设分母的逆是x。那你总知道13*x=2*x+11*x吧!结果对11取余那不就变成2*x啦?分母也是一样的,14的逆元就(不妨设为y)是2的逆元,因为 14*y \equiv 2*y \equiv 1(mod\ p)

例3:如果a或者b有一个小于0,那么怎么办?

直接默认a小于0,那么a转正就行了。比如-2/3 mod 11=(-2+11)/3 mod 11。原理和例2完全一致。

8.1

8.2

输出结果:(0, 0), (0, 1), (0, 18), (2, 7), (2, 12), (5, 6), (5, 13), (7, 3), (7, 16), (9, 6), (9, 13), (10, 2), (10, 17), (13, 8), (13, 11), (14, 2), (14, 17), (15, 3), (15, 16), (16, 3), (16, 16)。

def findsolution(p,a,b):
    s=[]
    cnt=0
    for i in range(p):
        z=i*i*i+a*i+b
        if 1==pow(z,(p-1)//2,p):
            y1=pow(z,(p+1)//4,p)
            s.append((i,y1))
            cnt+=1
            y2=p-y1
            if y1!=y2:
                s.append((i,y2))
                cnt+=1
    s.append((0, 0))
    cnt+=1
    s.sort()
    return s,cnt

# print(findsolution(11,1,6))训练
print(findsolution(19,1,1))

8.3

笔者不会。

8.4

笔者不会。

8.5

笔者不会。

8.6

内容概要:本文详细介绍了基于滑模控制(SMC)和H∞控制相结合的方法应用于永磁直线同步电机(PMLSM)的鲁棒控制。首先阐述了PMLSM的基本数学模型及其物理意义,包括d-q坐标系下的电压方程和运动方程。随后解释了滑模控制的工作原理,重点在于如何构建滑模面并确保系统沿此面稳定运行。接着讨论了H∞控制的目标——即使在不确定条件下也能保持良好的性能表现。文中还提供了具体的Matlab代码实例,展示了如何利用Matlab控制系统工具箱进行H∞控制器的设计。最后给出了一段完整的Matlab程序框架,演示了两种控制方法的具体实现方式。 适合人群:从事电机控制领域的研究人员和技术人员,尤其是那些想要深入了解滑模控制和H∞控制理论及其在实际工程中应用的人士。 使用场景及目标:适用于需要提高永磁直线同步电机控制系统抗干扰能力和鲁棒性的场合,如工业自动化生产线、精密加工设备等。通过学习本篇文章提供的理论知识和编程技巧,读者能够掌握这两种先进控制策略的应用方法,从而提升自身解决复杂控制问题的能力。 其他说明:文中所涉及的内容不仅限于理论讲解,还包括了大量的实战经验分享,有助于读者快速上手并在实践中不断改进自己的设计方案。同时鼓励读者积极尝试不同的参数配置,以便找到最适合特定应用场景的最佳解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值