《美团机器学习实践》—— 读后总结

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/xingoo_/article/details/86143628

《美团机器学习实践》—— 读后总结

从9月23日开始整理思维导图,前前后后半个月左右,收获确实比第一次阅读要多一些,以后会尽量按这种方式阅读,提高效率。

第一章 问题建模

449064-20180923115745097-706416001.jpg

第二章 特征工程

449064-20180924201042563-262505582.jpg

第三章 常用模型

449064-20180924213742458-223434476.jpg

第四章 模型融合

449064-20180925213433747-322423168.jpg

第五章 用户画像

449064-20180925221035638-850585516.jpg

第六章 POI实体链接

449064-20180927211035677-1099890800.jpg

第七章 评论挖掘

449064-20180929215041277-1735458226.jpg

第八章 O2O场景下的查询理解和用户引导

449064-20181001132714031-1902552314.jpg

第九章 O2O场景下排序的特点

449064-20181001135336798-371079346.jpg

第十章 推荐在O2O场景中的应用

449064-20181001141753787-698988747.jpg

第十一章 O2O场景下的广告营销

449064-20181004230941106-597599643.jpg

第十二章 用户偏好和损失建模

449064-20181004230952338-1700222842.jpg

第十三章 深度学习概述

449064-20181004233642562-1570663422.jpg

第十四章 深度学习在文本领域中的应用

449064-20181005231614230-1549310396.jpg

第十五章 深度学习在计算机视觉中的应用

449064-20181005231429121-1911903814.jpg

第十六章 大规模机器学习

449064-20181005231454594-665476962.jpg

第十七章 特征工程和实验平台

449064-20181005231513831-1397987915.jpg

posted @ 2018-09-23 11:58 xingoo 阅读(...) 评论(...) 编辑 收藏
展开阅读全文
博主设置当前文章不允许评论。

没有更多推荐了,返回首页