pytorch
文章平均质量分 62
苏三福
我终于接受了黑色!
展开
-
【无标题】yolov5 結果分析
yolov5训练结果解析_XiaoGShou的博客-CSDN博客_yolov5训练结果分析转载 2022-05-25 16:36:25 · 694 阅读 · 0 评论 -
yolov5-6.0 使用torchsummary 打印模型信息
TorchSummary无法载入Dict数据类型解决方法 - kenvision - 博客园torchsummary是一个比较不错的评价网络数据结构的包,但是目前torchsummary只支持网络输入和输出为torch.Tensor类型的网络,在对一些较为复杂的网络模型中,载入的可能并不一定为tensor类型,也有可能是list或者dict类型的数据。在train.py中的适当位置加入以下代码:from mysummary import summarysummary(model, torch原创 2022-03-30 10:31:52 · 2764 阅读 · 4 评论 -
【onnx模型 双输入,模型推理测试】
import onnx,cv2import numpy as npimport onnxruntime as ortfrom pip import main# exit()# read imagesdef read_images(left_img,right_img,width=None): left = cv2.imread(str(left_img), cv2.IMREAD_COLOR) right = cv2.imread(str(right_img), cv2.IM.原创 2022-03-23 18:33:14 · 7600 阅读 · 0 评论 -
【pytorch转onnx,两个input】
import torchmodel_path = './hitnet_sf_finalpass/version_40/checkpoints/epoch=6-step=44890.ckpt'left_in = (torch.randn(1, 3, 480, 640, device='cuda'), torch.randn(1, 3, 480, 640, device='cuda'))right_in = torch.randn(1, 3, 480, 640, device='cuda')ck.原创 2022-03-23 18:27:55 · 2965 阅读 · 0 评论 -
Yolov5 libtorch 训练自己的数据并用liborch 部署
环境:ubuntu18.01(训练平台) , windows / vs2017 部署平台 opencv3.4.7 (提前编译好的)cuda10.1pytorch1.6yolov5 项目:https://github.com/ultralytics/yolov5yolov5v2.0模型下载链接:https://github.com/ultralytics/yolov5/releases训练阶段:libtorch部署 win10 vs2017, opencv3.4...原创 2021-02-27 16:44:50 · 2081 阅读 · 2 评论 -
PYTORCH# 训练优化
# PYTORCH# 训练优化之一1、 pytorch 训练的可优化方向1.1、 优化方式之一:数据的读取1.1、 安装使用ApexApex是Nvidia 提出的分布式框架, 用来混合精度训练加速神经网络的工具。先下载Apex:git clone https://github.com/NVIDIA/apexcd apex: 可以看到有两个requirement文件, requiremen.txt, requirement_dev.txt :requiremen.txt :cxxfil..原创 2020-10-23 12:43:29 · 309 阅读 · 0 评论 -
CNN作为固定特征提取器 以及 微调CNN
https://blog.csdn.net/zzh2910/article/details/103987523微调CNN:net = torchvision.models.resnet18(pretrained=True) # 加载resnet网络结构和预训练参数num_ftrs = net.fc.in_features # 提取fc层的输入参数net.fc = nn.Linear(num_ftrs, 2) # 修改输出维度为2net = net.to(device) # 使用分类交叉.转载 2020-10-16 17:34:21 · 1109 阅读 · 0 评论 -
pytorch -YOLOV3 WIN10 CUDA10.1 使用过程
工程代码:https://github.com/eriklindernoren/PyTorch-YOLOv31, 配置pytorch 1.6 cuda10.1 python3.6libtorch1.6 cuda10.1opencv-3.4.6-vc14_vc15vs2017 我模型转换的工作是在ubuntu上的。pytorch 1.6 的安装 ,建议用官网的安装方式:pip install torch==1.6.0+cu101 torchvision==0.7.0+cu1...原创 2020-09-30 14:54:39 · 853 阅读 · 4 评论 -
pytorch torch.jit.trace()使用模型转换要注意的问题
https://www.jianshu.com/p/8206b198533d如果代码中有if条件控制,尽量避免使用torch.jit.trace来转换代码,因为它不能处理变化条件,如果非要用trace的话,可以把if条件控制改成别的形式,比如:def f(x): if x > 0: return False else: return True可以改成:def f(x): return x <= 0 jit不能转换第三方Py...转载 2020-09-28 14:15:26 · 18080 阅读 · 9 评论 -
PyTorch YOLOV3 模型转换问题
工程代码:https://github.com/eriklindernoren/PyTorch-YOLOv3第一步:下载Darknet 版的yolov3.weights第二部:使用以上工程代码加载模型:model.load_darknet_weights() 并保存为pytorch模型格式yolov3.pth:torch.save(model.state_dict(), pytorch_model)第三步:用 torch.jit.trace convert 模型为 .pt 格式...原创 2020-09-28 14:12:43 · 2611 阅读 · 3 评论 -
pytorch 量化笔记
什么是量化?量化是指用于执行计算并以低于浮点精度的位宽存储张量的技术。量化模型对张量使用整数而不是浮点值执行部分或全部运算。 这允许更紧凑的模型表示,并在许多硬件平台上使用高性能矢量化操作。与典型的 FP32 型号相比,PyTorch 支持 INT8 量化,从而可将模型大小减少 4 倍,并将内存带宽要求减少 4 倍。 与 FP32 计算相比,对 INT8 计算的硬件支持通常快 2 到 4 倍。 量化主要是一种加速推理的技术,并且量化算子仅支持前向传递。量化能够在模型精度几乎不损失的情况下大大降低模型的.原创 2020-09-25 19:08:16 · 3267 阅读 · 0 评论 -
RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 179 and 182
用pytorch Dataloader加载数据的时候报错如上, 原因是数据集未resize到统一大小,将训练的数据处理成统一大小就可以了。mark。原创 2020-04-08 16:56:15 · 417 阅读 · 0 评论
分享