行者^_^煜煜
码龄9年
关注
提问 私信
  • 博客:109,889
    社区:40
    109,929
    总访问量
  • 57
    原创
  • 64,859
    排名
  • 267
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:机器学习,推荐系统,Java,Python,PyTorch都是我的兴趣和分享方向

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:黑龙江省
  • 加入CSDN时间: 2015-12-09
博客简介:

xingzhe123456789000的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    495
    当月
    2
个人成就
  • 获得305次点赞
  • 内容获得144次评论
  • 获得425次收藏
  • 代码片获得251次分享
创作历程
  • 10篇
    2024年
  • 7篇
    2023年
  • 8篇
    2022年
  • 12篇
    2021年
  • 20篇
    2020年
  • 1篇
    2019年
成就勋章
TA的专栏
  • 论文阅读
    44篇
  • 笔记
    11篇
兴趣领域 设置
  • 数据结构与算法
    推荐算法
  • 人工智能
    opencv迁移学习
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

论文《Federated Recommendation with Additive Personalization》阅读

今天带来的是 ICLR 2024 关于联邦推荐的论文《Federated Recommendation with Additive Personalization》,论文由 悉尼科技大学 Zhiwei Li 等人 及 马里兰大学帕克分校(UMD)Tianyi Zhou 完成。论文发表在 ICLR 2024,主要聚焦于 联邦推荐场景下 (1)不同用户与 server 上传下载的各自的 embedding gradient 比较片面;(2)较大的数据量传输影响 传输效率 这几个问题,提出了模型FedRAP。
原创
发布博客 2024.06.26 ·
994 阅读 ·
23 点赞 ·
3 评论 ·
15 收藏

论文《FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation》阅读

今天带来清华大学 武楚涵 博士 发表在FL-ICML 2021(ICML 2021 关于联邦学习的workshop)上的论文《FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation》。论文主要面向的问题是在联邦推荐场景下使用GNN无法提取 high-order neighbor 的问题,作者使用一种graph expansion 方法 来提取 高阶邻居 信息。
原创
发布博客 2024.06.22 ·
717 阅读 ·
23 点赞 ·
1 评论 ·
19 收藏

论文《Dual-Contrastive for Federated Social Recommendation》阅读

今天简单总结一下一篇关于联邦推荐方面的论文《Dual-Contrastive for Federated Social Recommendation》,主要简单介绍一下论文的思路,具体pipeline 就先不介绍了。
原创
发布博客 2024.06.17 ·
933 阅读 ·
19 点赞 ·
1 评论 ·
16 收藏

论文《Federated Social Recommendation with Graph Neural Network》阅读

今天总结一下最近阅读的关于联邦社会化推荐的论文《Federated Social Recommendation with Graph Neural Network》,论文 由 UIC(伊利诺伊大学芝加哥分校)数据挖掘方向大牛 Philip S. Yu(俞士纶)团队 Zhiwei Liu 等人 和 北航 Hao Peng 等人完成。论文发表在期刊 TIST (ACM Transactions on Intelligent Systems and Technology) 2022 上。
原创
发布博客 2024.06.13 ·
785 阅读 ·
14 点赞 ·
1 评论 ·
24 收藏

论文《Causal Inference for Recommendation: Foundations, Methods and Applications》阅读

今天简要概括一下浮光掠影看完的一篇综述 《Causal Inference for Recommendation: Foundations, Methods and Applications》,写个阅读笔记以防忘记。论文聚焦因果推断在推荐系统各个方面的应用。
原创
发布博客 2024.06.02 ·
343 阅读 ·
3 点赞 ·
1 评论 ·
3 收藏

论文《Causal Inference for Recommender Systems》阅读

今天给大家带来的是发表在推荐系统顶会 **RecSys 2020** 上的文章《Causal Inference for Recommender Systems》,文章聚焦 推荐系统中 曝光 (exposure) 和 评分(rating)之间的偏差问题,通过因果推断,完成了模型 **Deconfounded Recommder** 。
原创
发布博客 2024.06.01 ·
942 阅读 ·
26 点赞 ·
1 评论 ·
13 收藏

文章《Causal Inference for Knowledge Graph based Recommendation》阅读

今天带来的是一篇发表在 TKDE 上的 2022 年的一篇关于因果推荐的论文,论文聚焦于基于知识图谱(Knowledge Graph, KG)的推荐系统方向,通过后门调整和反事实推理,对 KG-based RS 进行了优化。论文提出了模型 基于知识图谱的因果推荐 (**K**nowledge **G**raph-based **C**ausal **R**ecommendation, **KGCR**)模型。论文组合使用后门调整和反事实推理,分别完成了confounder去除和对于结果的debias。
原创
发布博客 2024.05.31 ·
754 阅读 ·
9 点赞 ·
1 评论 ·
16 收藏

论文《CausalRec: Causal Inference for Visual Debiasing Visually-Aware Recommendation》阅读

今天为大家带来的是 **ACM MM 2021** 上关于因果推荐的一篇论文《CausalRec: Causal Inference for Visual Debiasing Visually-Aware Recommendation》,论文主要聚焦在visually-based recommendation 这一主题,针对视觉特征造成的 visual bias, 基于因果推断,提出了基于因果干预的推荐模型 **CausalRec**。文章对于中介效应的介绍非常细致,值得学习。
原创
发布博客 2024.05.30 ·
731 阅读 ·
13 点赞 ·
1 评论 ·
16 收藏

论文《Exploring to Prompt for Vision-Language Models》阅读

今天带来的论文是《Exploring to Prompt for Vision-Language Models》,主题是基于CLIP的VLPT(Vision-Language Pre-Training)模型的提示学习(Prompt Learning),论文提出框架 **CoOp** (**Co**ntext **Op**timization),通过一个简单的提示向量自动学习的idea,完成了相当不错的结果。论文由南洋理工S-Lab发表,发表在IJCV上(2022)。
原创
发布博客 2024.03.28 ·
1470 阅读 ·
18 点赞 ·
4 评论 ·
27 收藏

论文《Exploring CLIP for Assessing the Look and Feel of Images》阅读

今天带来的是论文《Exploring CLIP for Assessing the Look and Feel of Images》,论文主要通过 **CLIP** 模型来完成图像的质量(how it **looks**,即quality perception)和情感(how it **feels**, 即abstract perception)评分。
原创
发布博客 2024.03.06 ·
1222 阅读 ·
19 点赞 ·
1 评论 ·
17 收藏

论文《Revisiting Alternative Experimental Settings for Evaluating Top-N Item Recommendation Algorithms》

今天带来的是人大 Wayne Xin Zhao等人完成,发表在CIKM 2020上的一篇短文《Revisiting Alternative Experimental Settings for Evaluating Top-N Item Recommendation Algorithms》,对推荐排序算法的Evaluation进行了较为深入的考察。
原创
发布博客 2023.11.10 ·
128 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

论文《Analyzing and Simulating User Utterance Reformulation in Conversational Recommender Systems》阅读

论文《Analyzing and Simulating User Utterance Reformulation in Conversational Recommender Systems》阅读
原创
发布博客 2023.11.03 ·
111 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

论文《C2-CRS: Coarse-to-Fine Contrastive Learning for Conversational Recommender System》阅读

今天给大家带来的是发表在 **WSDM 2022** (CCF B会)上的论文《C2-CRS: Coarse-to-Fine Contrastive Learning for Conversational Recommender System》,论文有人大 RUCAIBox 团队完成,主要聚焦于对话推荐(Conversational Recommendation System, **CRS**)问题,完成了一个基于对比学习的对话推荐模型CR-CRS。
原创
发布博客 2023.10.10 ·
177 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

论文《Enhancing Hypergraph Neural Networks with Intent Disentanglement for SBR》阅读

今天给大家带来的是SIGIR 2022 一篇短文《Enhancing Hypergraph Neural Networks with Intent Disentanglement for Session-based Recommendation》,论文通过引入多意图解耦视角,分别从微观角度(超图构造和Intent Graph方法)与宏观角度(自监督意图分离)完成了会话推荐问题。论文由清华大学、美团共同完成,提出模型**HIDE**
原创
发布博客 2023.09.25 ·
238 阅读 ·
2 点赞 ·
1 评论 ·
0 收藏

论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读

今天带来的是由微软Edward Hu等人完成并发表在ICLR 2022上的论文《LoRA: Low-Rank Adaptation of Large Language Models》,论文提出了大模型 tuning 框架 **LoRA** (**Lo**w-**R**ank **A**daptation)。
原创
发布博客 2023.08.19 ·
1047 阅读 ·
1 点赞 ·
3 评论 ·
0 收藏

论文《TALLRec: An Effective and Efficient Tuning Framework to Aligh LLM with Recommendation》阅读

今天给大家带来的是来自中科大 何向南 老师团队,由一作 Keqin Bao等人完成的论文《TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation》,论文主要聚焦于将大模型应用于推荐场景,并提出了 **TALLRec** 模型,目前还是arXiv预印版,论文具体发表情况暂时未知。
原创
发布博客 2023.08.16 ·
375 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

论文《Contrastive Meta Learning with Behavior Multiplicity for Recommendation》阅读

今天带来的是发表在SWDM 2022上关于多行为推荐的对比元学习论文《Contrastive Meta Learning with Behavior Multiplicity for Recommendation》,提出模型CML。论文由香港大学韦玮等人完成。
原创
发布博客 2023.08.04 ·
364 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

论文《Implicit Feedbacks are Not Always Favorable: Iterative Relabeled OCCF against Noisy Interactio》阅读

今天带来的是由中科院、国科大、中山大学以及鹏城实验室联合出品的关于隐性反馈推荐场景下正反馈噪声消除的作品《Implicit Feedbacks are Not Always Favorable: Iterative Relabeled One-Class Collaborative Filtering against Noisy Interactions》,发表在ACM MM 2021上,值得推荐。
原创
发布博客 2022.11.17 ·
267 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

论文《Efficient Heterogeneous Collaborative Filtering without Negative Sampling for Recommendation》阅读

今天简要介绍论文《Efficient Heterogeneous Collaborative Filtering without Negative Sampling for Recommendation》,论文对推荐系统中需要进行负采样添加负例而造成的性能损失这一问题进行了解决。论文提出了EHCF模型,并发表在了AAAI 2020(CCF A类会议),由清华大学 **THUIR** 组完成,论文角度新颖,完成度很高,非常值得推荐。
原创
发布博客 2022.11.10 ·
468 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

论文《How to Learn Item Representation for Cold-Start Multimedia Recommendation》阅读

今天简要介绍一下ACM MM 2020的多模态推荐模型 **MTPR**,文章名称《How to Learn Item Representation for Cold-Start Multimedia Recommendation》,由中科大何向南老师组完成,旨在解决面向多模态推荐背景下冷启动问题。
原创
发布博客 2022.11.09 ·
504 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多