k8s启动单机redis

前言:
kubernetes启动单机redis,可以测试环境使用。

我的其它相关文档:
《docker-compose快速启动redis》
《helm启动radis-ha》

1. 不使用密码

1. 1 yml文件

创建yml文件如下,可以叫redis.yml

---
kind: Deployment
apiVersion: apps/v1
metadata:
  name: redis
  namespace: redis
spec:
  replicas: 1
  selector:
    matchLabels:
      name: redis
spec:
  replicas: 1
  template:
    metadata:
      labels:
        name: redis
    spec:
      containers:
      - name: redis
       # 镜像随意什么版本,不愿意选就这样用latest吧
        image: redis:5
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 6379
          protocol: TCP
        volumeMounts:
        - mountPath: /data
          name: redis-data
      volumes:
      - name: redis-data
        persistentVolumeClaim:
          claimName: pv-redis
      imagePullSecrets:
      - name: my-harbor
---
kind: Service
apiVersion: v1
metadata:
  name: redis
  namespace: redis
  labels:
    name: redis
spec:
 type: NodePort
 ports:
 - port: 6379
   targetPort: 6379
   nodePort: 31001
   name: redis-port
 selector:
   name: redis

---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pv-redis
 namespace: redis
spec:
 accessModes:
   - ReadWriteMany
 resources:
   requests:
     storage: 5Gi

1.2 启动

kubectl create -f redis.yml

2. 使用密码

根据上边示例添加如下内容:

  • Deployment中添加了一段挂载configmap
  • 后边加了一段创建Deployment
kind: Deployment
apiVersion: apps/v1
metadata:
  name: redis
  namespace: redis-pub
spec:
  replicas: 1
  selector:
    matchLabels:
      name: redis
  template:
    metadata:
      labels:
        name: redis
    spec:
      containers:
      - name: redis
        image: redis:5
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 6379
          protocol: TCP
        volumeMounts:
        - mountPath: /data
          name: redis-data
        - mountPath: /etc/redis/redis.cof
          name: rediscnf
          subPath: redis.cof
      volumes:
      - name: redis-data
        persistentVolumeClaim:
          claimName: pv-redis
      - name: rediscnf
        configMap:
          name: rediscnf
      imagePullSecrets:
      - name: my-harbor
---
kind: Service
apiVersion: v1
metadata:
  name: redis
  namespace: redis-pub
  labels:
    name: redis
spec:
 type: NodePort
 ports:
 - port: 6379
   targetPort: 6379
   nodePort: 30041
   name: redis-port
 selector:
   name: redis

---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pv-redis
 namespace: redis-pub
spec:
 accessModes:
   - ReadWriteMany
 resources:
   requests:
     storage: 300Gi
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: rediscnf
  namespace: redis-pub
data:
  redis.cof: |
    bind 0.0.0.0
    port 6379
    tcp-backlog 511
    timeout 0
    tcp-keepalive 0
    #loglevel notice
    #logfile "/redis/logs/redis.log"
    databases 16
    requirepass liubei@2021


在这里插入图片描述

<think>好的,用户让我介绍一下K8s深度学习,也就是Kubernetes在深度学习中的应用。首先,我需要回忆一下用户之前的对话历史,看看他们之前问过什么。之前他们询问了Jenkins的学习路径,可能对DevOps和持续集成有一定的了解,现在转向Kubernetes和深度学习的结合,可能是想了解如何利用Kubernetes来管理深度学习的工作负载。 接下来,我要确定用户的需求是什么。他们可能想知道Kubernetes在深度学习中的具体应用场景、优势,以及如何配置和管理深度学习任务。此外,用户可能对资源调度、分布式训练、GPU支持等方面感兴趣,因为这些是深度学习在Kubernetes上的关键点。 首先,我需要介绍Kubernetes的基本概念,但用户可能已经有一定的了解,所以可以简要带过,重点放在与深度学习的结合上。然后要分几个部分来展开:为什么用K8s做深度学习、核心功能、架构设计、部署流程、工具生态、挑战与解决方案,以及学习路径。 需要考虑用户可能的背景。他们可能是有一定技术基础的用户,比如开发者或DevOps工程师,想要将深度学习模型部署到生产环境中,或者管理大规模的训练任务。因此,内容需要详细但不过于基础,强调实际应用和最佳实践。 在组织内容时,要结构清晰,逐步深入。例如,先讲为什么选择K8s,然后核心功能,架构设计,部署流程,工具链,挑战,最后学习路径。每个部分需要用例子和具体的技术细节来支撑,比如使用Kubeflow进行流水线管理,GPU资源调度配置等。 还要注意用户可能遇到的常见问题,比如GPU资源不足时的自动扩缩容,如何监控资源使用情况,分布式训练的通信优化等,这些都需要在挑战与解决方案部分提到。 需要检查技术术语的准确性,比如Operator的概念,Kubeflow的组件,GPU插件的配置等,确保信息正确。同时,提供代码示例或配置片段,比如定义Pod资源限制的部分,这样用户可以直接参考应用。 最后,学习路径部分要给出逐步学习的建议,从基础到高级,包括官方文档、实践项目、社区资源等,帮助用户系统地掌握相关知识。同时,提醒用户关注社区动态,因为K8s和深度学习领域都在快速发展,保持更新很重要。 总结来说,回答需要覆盖K8s在深度学习中的关键应用,结合用户可能的技术背景,提供结构化的信息,实际案例,解决方案,以及学习资源,满足用户从入门到实践的需求。</think>### **KubernetesK8s)与深度学习结合指南** --- #### **1. 为什么选择 Kubernetes 进行深度学习?** - **核心优势**: - **弹性资源调度**:动态分配 GPU、CPU、内存等资源,应对计算密集型任务。 - **分布式训练支持**:天然适配多节点并行训练(如 TensorFlow/PyTorch 分布式训练)。 - **大规模实验管理**:统一管理模型训练、超参优化、推理服务等全生命周期。 - **成本控制**:通过自动扩缩容(HPA)避免资源闲置。 - **典型场景**: - 分布式模型训练(单机多卡/多机多卡)。 - 超参数搜索(Hyperparameter Tuning)。 - 模型推理服务(高可用、自动扩缩容)。 - 多租户资源共享(隔离团队或用户的计算环境)。 --- #### **2. Kubernetes 对深度学习的核心支持** | **功能** | **说明** | |------------------------|-------------------------------------------------------------------------| | **GPU 资源调度** | 通过 `nvidia-device-plugin` 插件暴露 GPU 资源,支持按需分配。 | | **分布式训练框架集成** | 原生支持 TensorFlow/PyTorch 的分布式通信(如 `AllReduce`)。 | | **任务队列管理** | 使用 `Job` 或 `CronJob` 定义训练任务,支持重试、超时控制。 | | **存储卷管理** | 持久化存储训练数据与模型(如 NFS、Ceph、云存储)。 | | **服务发现与负载均衡** | 通过 `Service` 和 `Ingress` 暴露推理服务,支持灰度发布和流量管理。 | --- #### **3. Kubernetes 深度学习架构设计** 1. **资源层**: - **GPU 虚拟化**:使用 NVIDIA GPU Operator 或 vGPU 技术(如 MIG)实现细粒度资源分割。 - **存储方案**: - 数据集:挂载高性能分布式存储(如 CephFS、Amazon EFS)。 - 中间结果:使用临时卷(`emptyDir`)。 - 模型持久化:对接对象存储(如 MinIO、S3)。 2. **任务调度层**: - **优先级与抢占**:通过 `PriorityClass` 确保高优先级任务优先获取资源。 - **自动扩缩容**:基于资源指标(GPU 利用率)触发扩缩容(需结合 Prometheus + KEDA)。 3. **训练与推理层**: - **分布式训练框架**: - **PyTorch**:使用 `torch.distributed` 和 `torch-elastic` 实现容错训练。 - **TensorFlow**:通过 `TF_CONFIG` 配置多 Worker 节点。 - **推理服务优化**: - 模型压缩(如 TensorRT)。 - 批处理(Batching)与缓存(Redis)。 --- #### **4. 深度学习任务部署流程** 1. **定义 Pod 资源需求**: ```yaml apiVersion: v1 kind: Pod metadata: name: pytorch-training spec: containers: - name: trainer image: pytorch/pytorch:latest resources: limits: nvidia.com/gpu: 2 # 申请 2 块 GPU memory: 32Gi ``` 2. **分布式训练示例(PyTorch)**: - 使用 `Job` 启动多个 Worker: ```yaml apiVersion: batch/v1 kind: Job metadata: name: pytorch-ddp-job spec: parallelism: 4 # 启动 4 个 Pod template: spec: containers: - name: worker image: pytorch-ddp-image command: ["python", "train.py"] env: - name: MASTER_ADDR value: "pytorch-ddp-job" # Headless Service 名称 ``` 3. **推理服务部署**: - 使用 `Deployment` 和 `Service`: ```yaml apiVersion: apps/v1 kind: Deployment metadata: name: model-inference spec: replicas: 3 selector: matchLabels: app: model-inference template: spec: containers: - name: infer image: model-inference:v1 ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: model-service spec: selector: app: model-inference ports: - protocol: TCP port: 80 targetPort: 8080 type: LoadBalancer ``` --- #### **5. 深度学习工具链与生态** | **工具** | **用途** | |-------------------|-------------------------------------------------------------------------| | **Kubeflow** | 提供完整 ML 流水线(Pipeline)、超参优化(Katib)、模型服务(KFServing)。| | **NVIDIA GPU Operator** | 自动化部署 GPU 驱动、容器运行时、监控工具。 | | **Prometheus + Grafana** | 监控 GPU 利用率、训练任务状态。 | | **Seldon Core** | 将模型封装为微服务,支持 A/B 测试和模型解释。 | | **MLflow** | 实验追踪、模型版本管理,与 Kubernetes 集成部署。 | --- #### **6. 挑战与解决方案** 1. **GPU 资源争抢**: - **方案**: - 使用 `ResourceQuota` 限制命名空间资源总量。 - 基于时间片的共享调度(如 NVIDIA MPS)。 2. **分布式训练通信延迟**: - **方案**: - 选择高性能网络插件(如 Calico + RDMA)。 - 优化数据加载(预处理后缓存至内存)。 3. **模型版本与回滚**: - **方案**: - 使用 `Helm Chart` 管理推理服务版本。 - 通过 GitOps(如 Argo CD)实现声明式部署。 --- #### **7. 学习路径建议** 1. **基础阶段**: - 掌握 Kubernetes 核心概念(Pod/Deployment/Service/Volume)。 - 学习 GPU 资源调度(NVIDIA Device Plugin 配置)。 2. **实战阶段**: - 部署分布式 PyTorch 训练任务(参考 [Kubeflow Training Operator](https://www.kubeflow.org/docs/components/training/))。 - 使用 KFServing 部署推理服务(支持 Canary 发布和自动扩缩容)。 3. **进阶阶段**: - 优化 GPU 利用率(监控与调度策略调优)。 - 设计多租户深度学习平台(结合 Namespace 和 RBAC)。 4. **工具链集成**: - 结合 MLflow 追踪实验,使用 Airflow 或 Argo 编排流水线。 --- #### **8. 典型应用案例** - **自动驾驶模型训练**: - 场景:跨地域多节点训练 PB 级数据集。 - K8s 方案: - 使用 `Volcano` 调度器优化批量任务。 - 通过 `Fluid` 加速分布式存储数据访问。 - **在线推荐系统**: - 场景:实时推理服务需低延迟、高吞吐。 - K8s 方案: - 部署 `InferenceService`(KFServing)自动扩缩容。 - 使用 `Knative` 实现 Serverless 弹性伸缩。 --- ### **总结** Kubernetes 为深度学习提供了**弹性基础设施**和**自动化运维能力**,核心价值在于统一管理训练与推理任务,最大化硬件利用率。学习重点应围绕 GPU 资源调度、分布式训练框架集成、推理服务优化展开。通过 Kubeflow 等工具链,可快速构建端到端的机器学习平台。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玄德公笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值