xinming_365
码龄8年
关注
提问 私信
  • 博客:247,133
    社区:6
    247,139
    总访问量
  • 76
    原创
  • 2,069,699
    排名
  • 47
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-04-02
博客简介:

xinming_365的博客

博客描述:
学习记录分享
查看详细资料
个人成就
  • 获得90次点赞
  • 内容获得22次评论
  • 获得463次收藏
  • 代码片获得468次分享
创作历程
  • 2篇
    2022年
  • 7篇
    2021年
  • 25篇
    2020年
  • 13篇
    2019年
  • 31篇
    2018年
  • 8篇
    2017年
成就勋章
TA的专栏
  • pytorch
    6篇
  • 深度学习
    11篇
  • python
    20篇
  • java
  • 机器学习
    7篇
  • algorithm
    3篇
  • tensorflow
    5篇
  • linux
    26篇
  • 概览
    1篇
  • vasp
    1篇
  • 数据挖掘
    1篇
  • AI
    2篇
  • deep learning
    1篇
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

os课程记录

操作系统的系统调用应用程序是可执行文件(程序的二进制代码和数据)和其他数据文件,linux支持多种可执行文件格式,ELF(Executable Linkable Format)是最常用的格式。关于ELF二进制文件,它是操作系统的一个对象,操作系统提供API打开,读取,改写对应文件,可以使用vim,cat,xxd等命令查看这个可执行文件。查看ELF二进制文件。vi /bin/ls解析二进制文件。主要关注文件的header,包括文件内容的分布,指令集体系的结构,入口地址。readelf -h查
原创
发布博客 2022.02.27 ·
396 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

图像旋转90度。

题目描述给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。题解这个题目搞了一个多小时。思路已经想好了难在两个循环的次数上。我的思路跟官方的不太一样。因为需要原地转换,所以只能想到交换。注意交换规则是matrix[row][col]=matrix[col][n−row−1]matrix[row][col] =matrix[col][n-row-1]matri
原创
发布博客 2022.01.18 ·
743 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

torch-geometric的安装

torch-geometric 的安装。torch-geometric的安装必须要求版本对应,否则会出现很多麻烦的问题。比如:OSError: [WinError 127] 找不到指定的程序。所以安装之前,仔细检查一下cuda版本,pytorch的版本等等。此外,还要注意电脑安装的CUDA驱动和pytorch 中对CUDA支持包的版本是否对应,不对应同样会出错。# cuda是否可用,不必要。python -c "import torch; print(torch.cuda.is_availa
原创
发布博客 2021.11.26 ·
3491 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

SchNet+attention代码阅读记录

阅读SchNet的过程中,关于一些变量的定义和含义总是忘记,下面做一下记录和整理。class SchNet(torch.nn.Module): def __init__(self, hidden_channels, num_filters, num_interactions, num_gaussians, cutoff, readout='add', dipole, mean, std, atomref): super(SchNet, self).__init__() ... d
原创
发布博客 2021.09.15 ·
1346 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

latex跨行跨列表格

使用revtex模板的跨行跨列表格时候不需要使用\usepackage{booktabs},否则midrule,toprule这些线条不能够正常显示。因此需要使用自带的线条。下面记录一下我试用过的跨行跨列表格latex语法 \begin{table}[hb] \centering \caption{ \label{cutoff} nothing } \begin{ruledtabular} \begin{tabular}{c*{10}{c} }
原创
发布博客 2021.08.11 ·
3309 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

mac安装 pytorch geometric

官方安装教程地址:https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html使用pip安装,mac不能使用cuda,所以使用下面的命令:pip install torch-sparselatest+cpu -f https://pytorch-geometric.com/whl/torch-1.6.0.htmlpip install torch-clusterlatest+cpu -f https://pyto
原创
发布博客 2021.05.15 ·
709 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

linux网络连接问题诊断

ethtoolethtool是linux的网络驱动程序的诊断和调整工具,可获取网络设备的相关信息,包括连接状态、驱动版本、PCI 总线定位等等。ethtool 是用于查询及设置网卡参数的命令。使用方式:ethtool ethx //查询ethx网口基本设置,其中 x 是对应网卡的编号,如eth0、eth1等等ethtool –h //显示ethtool的命令帮助(help)ethtool –i ethX //查询ethX网口的相关信息 ethtool –d et
原创
发布博客 2021.05.14 ·
2793 阅读 ·
1 点赞 ·
1 评论 ·
8 收藏

AdelaiDet 安装报错

python tools/train_net.py –config-file configs/FCOS-Detection/R_50_1x.yaml –eval-only –num-gpus 2 OUTPUT_DIR training_dir/fcos_R_50_1x MODEL.WEIGHTS training_dir/fcos_R_50_1x/fcos_R_50_1x.pthFile “/home/xxx/AdelaiDet/adet/layers/bezier_align.py”, lin
原创
发布博客 2021.04.28 ·
1790 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

linux 命令

lspci显示所有的pci设备信息。通过pci总线连接的设备都可以显示,例如网卡,存储等等。lspci:显示所有的pci设备信息,包括设备的BDF,设备类型,厂商信息。lspci -n/-nn:显示设备的vendor厂商号和device设备号;显示厂商等信息和名称。lspci -b:以总线的角度来显示所有的IRQ和地址。根据我的观察,大部分信息和不带参数时显示一致,除了SR-IOV设备分配出的Virtual Function设备。如下示例:物理网卡PF(physical function )显示一直
原创
发布博客 2021.03.11 ·
632 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

gnuplot使用简介

GnuplotGnuplot 是一款科学作图软件,官方网站是 http://www.gnuplot.info/。使用建立程序文件(file.gnu)set term png color enh solidset logscale xset xlabel 'L (nm)'set ylabel "Cumulative kappa (W/mK)"set output "cumulative_300K_kappa.png"plot "cumulative_300K.dat" using 1:2 w
原创
发布博客 2020.12.07 ·
1910 阅读 ·
2 点赞 ·
0 评论 ·
15 收藏

python 处理xml文件

XML可扩展标记语言(eXtensible Markup Language),被设计用来传输和存储数据。<?xml version="1.0" encoding="UTF-8"?><note> <to>Tove</to> <from>Jani</from> <heading>Reminder</heading> <body>Don't forget me this weekend!
原创
发布博客 2020.10.13 ·
1785 阅读 ·
1 点赞 ·
1 评论 ·
8 收藏

python的并行计算

pool模块pool类能够提供指定数量的进程,供用户调用。当有新的请求提交到pool中时,如果池还没有满,就会创建一个新的进程来执行请求。如果池满,请求就会告知先等待,知道池中有进程借书,才会创建新的进程来执行这些请求。apply()-该函数用于传递不定参数,同python中的apply函数一致,主进程会被阻塞知道函数执行结束。3.x之后不再出现map()map(func, iterable[, chunksize=None])Pool类中的map方法,与内置的map函数用法基本一致,它
原创
发布博客 2020.10.07 ·
591 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

迁移学习

按照学习方法可以将迁移学习分为下面的几大类基于样本的迁移学习基于特征的迁移学习假设源域和目标域的特征不在一个空间。通过一些办法变换到一个特征空间,从而特征变得相似基于模型(参数)的迁移学习神经网络的结构可以直接迁移,例如finetune,就是模型参数迁移基于关系的迁移学习迁移学习的问题,有两个基本的概念:领域(Domain)和任务(Task)领域是进行学习的主题,包括数据和生成这些数据的概率分布。D表示domain,P表示概率分布迁移过程,涉及到源域(source d
原创
发布博客 2020.10.07 ·
820 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

分类问题的metrics

评价分类模型基本上都会用到下面几个基本的术语。我们假设这是一个二分类的问题。分类目标只有两类,被称为正例(positive) 和负例(negative)。在预测问题中,会存在下面几个术语描述相关的结果。1)True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数);2)False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;3)False negatives(FN):被错误地划分为负例的个
原创
发布博客 2020.09.30 ·
585 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

yaml使用

yaml简介最近看代码,觉得大的工程都会使用单独使用配置文件,进行变量的声明和配置,而很多都是以yaml文件的形式保存。yaml是一种非常灵活的格式,几乎是json的超集。除了支持注释、换行符分隔、多行字符串、裸字符串和更灵活的类型系统之外,YAML 也支持引用文件,以避免重复代码。yaml语法规则基本规则:大小写敏感使用缩紧表示层级关系; 例如key:(空格)value,表示一个键值对,空格不可以省略。缩进时不允许使用Tab键,只允许使用空格缩紧的空格树木不重要,只要相同层级的元素左侧对齐
原创
发布博客 2020.09.03 ·
287 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Docker核心组件 + docker daemon配置

Docker Daemon是docker架构中运行在后台的守护进程,可以分为docker Server, Engine和Job三部分。Docker DaemonDocker Daemon通过Docker server模块接受docekr clinet的请求,并在Engine中处理请求,然后根据请求类型,创建出指定的Job并运行。运行过程的作用有下面几种:从docker registry中获取镜像通过grahdriver执行容器镜像的本地化操作通过networkdriver执行容器网络环境配置
原创
发布博客 2020.09.02 ·
956 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

argparse模块

使用argparse的第一步是先创建一个ArgumentParser对象,ArgumentParser对象包含了将命令行解析成为Python数据类型所需要的全部信息。创建过程如下:parser = argparse.ArgumentParser(description=‘Process some integers.’)位置参数和可选参数位置参数在学习argparse模块的时候,搞清楚命令行位置参数和可选参数这两个概念十分有必要。基于位置的参数,参数的出现不需要前缀(以 - 或 – 开头的),而且
原创
发布博客 2020.08.25 ·
343 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

nvidia-smi &nvidia-docker

nvidia-sminvidia-smi是nvidia 的系统管理界面 ,其中smi是System management interface的缩写,它可以收集各种级别的信息,查看显存使用情况。此外, 可以启用和禁用 GPU 配置选项 (如 ECC 内存功能)。
原创
发布博客 2020.08.19 ·
1082 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Python函数的特殊属性

Python 的函数特殊属性__doc__用于获取函数的文档说明,如果没有,则反悔None。__name__获取函数的名称例如:In [72]: def demo(a:3,b:'str') -> int: ...: return aIn [77]: demo.__name__Out[77]: 'demo'__qualname__获取函数的qualname,点示法显示函数名称、所在的类、模块等梯级地址。__module__返回函数所在的模块,如果无则返回None
原创
发布博客 2020.08.11 ·
691 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

mask R-CNN

语义分割(semantic segmentation),实例分割(instance segmentation)联系:语义分割和实例分割都是目标分割中的两个小的领域,都是对输入的图片做分割处理。区别:通常意义上的目标分割指的是语义分割,语义分割已经有很长的发展历史,已经取得了很好地进展,目前有很多的学者在做这方面的研究。实例分割是一个从目标分割领域独立出来的一个小领域,是最近几年才发展起来的。实例分割比语义分割更复杂,需要在语义分割的基础上对同类物体进行更精细的分割。Mask R-CNN的架构Mask
原创
发布博客 2020.08.06 ·
854 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏
加载更多