给定一个正整数m,如果两个整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余
扩展:
1、a、b对模m同余,b、c对模m也同余,那么a、c对模m也同余
2、a、b对模m同余,c、d对模m也同余,那么规律如下:
1)a加减c、b加减d对模m同余
2)a*c、b*d对模m同余
3、a、b对模m同余,那么a的n次方、b的n次方对m同余
结论:(a+b+c+....+n)%m = a%m+b%m+c%m+....+n%m;
即:对于加法、乘法、乘方运算,算好后取余和边算边取余是等价的
例题1:今天是周一,a的b次方后是周几
#include <bits/stdc++.h>
using namespace std;
int main() {
int a, b;
cin >> a >> b;
int n = 1;
for(int i=1; i<=b; i++) {
n = n * a % 7;
}
cout << n;
return 0;
}
例题2:1024的10次方的最后三位数字是什么(扩展为a的b次方的最后几位数字是什么)
#include <bits/stdc++.h>
using namespace std;
int main() {
int a, b;
cin >> a >> b;
int n = 1;
for(int i=1; i<=b; i++) {
n = n*a%1000;
}
cout << n;
return 0;
}
4376

被折叠的 条评论
为什么被折叠?



