初等数论--同余

给定一个正整数m,如果两个整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余

扩展:

1、a、b对模m同余,b、c对模m也同余,那么a、c对模m也同余

2、a、b对模m同余,c、d对模m也同余,那么规律如下:

1)a加减c、b加减d对模m同余

2)a*c、b*d对模m同余

3、a、b对模m同余,那么a的n次方、b的n次方对m同余

结论:(a+b+c+....+n)%m = a%m+b%m+c%m+....+n%m;

即:对于加法、乘法、乘方运算,算好后取余和边算边取余是等价的

例题1:今天是周一,a的b次方后是周几

#include <bits/stdc++.h>
using namespace std;
int main() {
	int a, b;
	cin >> a >> b;
	int n = 1;
	for(int i=1; i<=b; i++) {
		n = n * a % 7;
	}
	cout << n;
	return 0;
}

例题2:1024的10次方的最后三位数字是什么(扩展为a的b次方的最后几位数字是什么)

#include <bits/stdc++.h>
using namespace std;
int main() {
	int a, b;
	cin >> a >> b;
	int n = 1;
	for(int i=1; i<=b; i++) {
		n = n*a%1000;
	}
	cout << n;
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值