数据为什么要可视化?如何可视化?

 

文章发布于公号【数智物语】 (ID:decision_engine),关注公号不错过每一篇干货。

 

 

 

来源 | CrossHands(ID:SmallWorldBigIdea)

作者 | AhongPlus

 

01

数据为什么要可视化?

 

  • 一方面是因为数字太抽象,图表更直观,而且图表可以突出数据中的关注点(比如某个月的交易大幅度波动等);

  • 另一方面,数据面向的受众大都不具备专业的数据知识,可视化的形式有助于降低读懂数据的门槛;

简言之,数据可视化提高了数据沟通的效率。

举个例子,假设现在年终汇报某KPI的达成情况,数据如下表所示:

 

 

可视化后的效果如下:

 

 

观察可视化后的图表,很容易就能发现Q3没有达标,但年度累计是达标的。

 

02

数据可视化的一般步骤(以数据汇报的场景为例):

 

1. 准备原始数据,一般是经过统计的数据;

2. 明确展示的对象(给谁看),不同的汇报对象关注的业务角度和数据颗粒度不一样;

3. 筛选数据中需要突出的点,确认数据背后要表达的主题或者结论;

4. 选择合适的图表类型

5. 选择可视化的工具

6. 根据PPT的风格,调整图表中的文字、线条、形状以及对应的大小、颜色等,对图表中的要素布局进行调整;

 

03

好的数据可视化所具备的特征

 

  • 展示了一个完整的故事(观点或结论等也可以说“问题导向”(因为要说明一个问题,所以才会统计出数据);

  • 适量地展示有效信息,展示的内容并不是越多越好,抓住问题的主干信息即可;

  • 展示信息的形式能清晰直观地表达数据的内涵,受众能很好地理解图表要传达的信息;

 

注:来源见图片左下角

 

这里以 Hans Rosling 在 TED 上的一个演讲来说明“优秀的数据可视化”是什么样子的。

 

 

视频源地址:https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen

 

04

关于图表的选择

 

图表的选择主要基于两方面:

  • 数据的类型和结构,比如数据是数值还是文字,是百分比还是绝对值?数据的维度如何等;

  • 图表的功能,是要进行对比还是描述时间序列,抑或是说明成分结构等;

 

这个网站(https://datavizcatalogue.com/ZH/)总结了常见的可视化图表类型,不仅按功能进行了分类,还对每种图表的制作过程及适用场景进行了说明,非常推荐。比如关于时间序列的展示,可以选择的图表方案如下:

 

 

另附两张图表选择的 guideline 供参考。

 

https://associationanalytics.com/2017/06/25/choose-right-visualization/

 

原作者 Andrew Abela 图源 https://vizard.co/tableau-interview-questions/

 

05

关于可视化工具的选择

 

如果是个人使用,建议选择现成的或者学习成本相对低的工具。按是否需要编程可以将作图工作分为两类:

  • 不用编程(几乎):比如 Excel, Power BI, Tableau, SPSS 等。

  • 需要编程的工具:比如 Python, R, SAS 等统计软件,还有 Fine Report, Echarts, D3.JS, plot.ly 等可视化控件。

 

如果是工作中使用,则可能还要考虑其他方面:

  • 图表类型的丰富度,e.g. 是否支持工作中要用到的图表;

  • 前端交互的友好程度,e.g.是否有控件可以直接拖拉拽来生成图表,界面是否支持交互操作,是否能导出不同格式或者分辨率的图片,颜色风格可以自定义等;

  • 底层数据的支持,e.g.非结构化的文本数据,数据量很大,数据接口调用是不是方便等。

 

06

关于数据可视化的补充

 

1. 基本的图表是可以组合使用的,比如柱形图和折线图组合使用:

 

注:笔者参考网上教程使用Excel制作的“折线柱状图”,还可以进一步美化的

 

2. 图表中的线条或者形状可以变得更有意思一点,比如做柱状图的时候可以在“柱”里填充图案,更多参考(http://club.excelhome.net/thread-1019338-1-1.html)。

 

3. 可视化不要用力过猛,比如:

 

图片来源:Say It with Charts Workbook, Gene Zelazny

 

4. 发挥创造性,增强对比性,比如:

 

图片来源:Say It with Charts Workbook, Gene Zelazny

 

5. 不要在可视化中“耍花招”或者产生其他误导信息,比如调整坐标轴使并不严重的轻微数据波动趋势看起来很严重(最好不要这么干)。

 

图片来源:https://www.huffingtonpost.com/raviparikh/lie-with-data-visualization_b_5169715.html

 

07

数据可视化的学习资源

 

  • 网站

1. https://datavizcatalogue.com/ZH/

2. Python作图可以参考 

https://python-graph-gallery.com/

3. Python 实现 50 种图表的制作 

https://www.machinelearningplus.com/plots/top-50-matplotlib-visualizations-the-master-plots-python/

4. 如果用 R 作图,那么看这里 

https://www.r-graph-gallery.com/

5.  https://datavizproject.com 给出各种图表的说明以及每种图表的实际使用案例(如果你知道图表长啥样但不知道名称可以来这里搜)。

 

  • 教材

1. 《用图表说话:麦肯锡商务沟通完全工具箱》,Gene Zelazny,清华大学出版社,主要内容讲商务场景下选用什么图表,以及优化方案;

2. 《写给大家看的设计书》,Robbin Williams,人民邮电出版社

3. 《Excel图表之道》,刘万祥,电子工业出版社,工具不重要,方法更重要;学习优秀的商业图表(经济学人等期刊杂志)也是可视化精进的方式之一;

4. 《数据之美:一本书学会可视化设计》,Nathan Yau,中国人民大学出版社;

5. 《鲜活的数据:数据可视化指南》,Nathan Yau,人民邮电出版社;

6. 《Storytelling with Data:A Data Visualization Guide for Business Professionals》,Cole Nussbaumer Knaflic(中译本为:《用数据讲故事》)。

 

如果你要检索数据可视化指南相关的信息,可以使用关键词

  • data visualization, charts, graph

  • cheetsheet, guide, guideline, chooser, collection, cookbook, gallery

 

数智优质活动推介

 

由上海市经济和信息化委员会、上海市商务委员会、上海市长宁区人民政府指导,上海市长宁区青年联合会、亿欧公司联合主办的“ 2019全球新经济年会-产业互联网峰会”将在上海长宁举办。

 

本次大会邀请了慧聪集团、甲骨文、盛景网联、千方科技、找钢网、金山云等产业巨头 ,明势资本、远望资本、阿尔法公社、赛意产业基金等产业互联网一线投资人。产业互联网从业与创业者将共同参会交流产业互联网的未来,共话产业变革新机遇。

 

大会截止日期6月13日,感兴趣的小伙伴可“扫描下方海报二维码”或点击“阅读原文”进行活动报名和查看大会议程安排。

 

111.jpg

活动页面链接:https://www.iyiou.com/a/cyhlw_shanghai_2019/

扫描海报二维码 或 点击阅读原文

进行“活动报名”以及“查看大会议程安排

 

|| 推荐阅读 ||

 

链接图片1.png

https://mp.weixin.qq.com/s/tL0hNaSwp990iF6-e2UgkA

 

链接图片3.png

https://mp.weixin.qq.com/s/Bj9VK6kNGUTolw-FaA_YOw

 

 

 

星标我,每天多一点智慧

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值