Collecting sklearn
Using cached sklearn-0.0.post12.tar.gz (2.6 kB)
Installing build dependencies ... done
Getting requirements to build wheel ... error
error: subprocess-exited-with-error
× Getting requirements to build wheel did not run successfully.
│ exit code: 1
╰─> [15 lines of output]
The 'sklearn' PyPI package is deprecated, use 'scikit-learn'
rather than 'sklearn' for pip commands.
Here is how to fix this error in the main use cases:
- use 'pip install scikit-learn' rather than 'pip install sklearn'
- replace 'sklearn' by 'scikit-learn' in your pip requirements files
(requirements.txt, setup.py, setup.cfg, Pipfile, etc ...)
- if the 'sklearn' package is used by one of your dependencies,
it would be great if you take some time to track which package uses
'sklearn' instead of 'scikit-learn' and report it to their issue tracker
- as a last resort, set the environment variable
SKLEARN_ALLOW_DEPRECATED_SKLEARN_PACKAGE_INSTALL=True to avoid this error
More information is available at
https://github.com/scikit-learn/sklearn-pypi-package
[end of output]
note: This error originates from a subprocess, and is likely not a problem with pip.
ERROR: Failed to build 'sklearn' when getting requirements to build wheel
这个是什么意思?
这个错误信息的意思是:**`sklearn` 这个包名已经被弃用,现在应该使用 `scikit-learn`**。
## 问题解释
- **旧包名**: `sklearn` (已弃用)
- **新包名**: `scikit-learn` (当前使用)
## 解决方案
### 方法1:安装正确的包
```bash
# 卸载已安装的sklearn(如果有)
pip uninstall sklearn
# 安装正确的scikit-learn
pip install scikit-learn
```
### 方法2:修改requirements.txt或安装命令
如果你在运行之前的猫狗识别程序,应该使用:
```bash
pip install tensorflow matplotlib pillow scikit-learn numpy
```
### 方法3:在代码中修改导入语句
在Python代码中,导入时仍然使用`sklearn`,但安装包时要用`scikit-learn`:
```python
# 代码中这样导入(保持不变)
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
# 但安装时要用
# pip install scikit-learn
```
## 为什么会这样?
- **历史原因**: 早期确实有`sklearn`包,但现在统一使用`scikit-learn`
- **包名统一**: 为了避免混淆,官方决定只保留`scikit-learn`作为正式包名
- **导入不变**: 安装`scikit-learn`后,在代码中仍然使用`import sklearn`
## 完整的正确安装命令
对于我们的猫狗识别程序,应该运行:
```bash
pip install tensorflow matplotlib pillow scikit-learn numpy
```
或者如果你使用conda:
```bash
conda install scikit-learn matplotlib pillow numpy
conda install tensorflow # 或者 pip install tensorflow
```
## 验证安装
安装完成后,可以测试是否成功:
```python
# 测试导入
try:
from sklearn.model_selection import train_test_split
print("scikit-learn 安装成功!")
except ImportError as e:
print(f"导入失败: {e}")
```
**总结**: 总是使用 `pip install scikit-learn` 而不是 `pip install sklearn`,但在代码中继续使用 `import sklearn` 或 `from sklearn import ...`。

被折叠的 条评论
为什么被折叠?



