tensorflow object detection api 制作数据集(png图片转为tfrecord)

制作数据集主要过程请参考:

https://blog.csdn.net/honk2012/article/details/79099651

https://blog.csdn.net/w5688414/article/details/78970874

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/preparing_inputs.md


本文仅对generate_tfrecord.py文件作修改以完成png图片的tfrecord格式制作,代码如下(改动了第43,45,51,73行):

"""
Usage:
  # From tensorflow/models/
  # Create train data:
  python generate_tfrecord.py --csv_input=data/train_labels.csv  --output_path=train.record
  # Create test data:
  python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS


# TO-DO replace this with label map
def class_text_to_int(row_label):
    if row_label == 'plane':
        return 1
    else:
        None


def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    filename = str(group.filename) + '.png'
    #print (filename)
    with tf.gfile.GFile(os.path.join(path, '{}'.format(filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = filename.encode('utf8')
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature('png'.encode('utf8')),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), 'images')
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print('Successfully created the TFRecords: {}'.format(output_path))


if __name__ == '__main__':
    tf.app.run()


TensorFlow Object Detection API 是一个开源项目,它提供了一系列基于 TensorFlow 的工具和库,用于实现目标检测任务。对于 macOS 系统,我们可以通过以下步骤来使用 TensorFlow Object Detection API: 1. 安装 TensorFlow:在 macOS 上安装 TensorFlow 是使用 TensorFlow Object Detection API 的前提。你可以通过 pip 命令进行安装,例如在终端中执行 `pip install tensorflow`。 2. 下载 TensorFlow Object Detection API:打开终端并导航到适合你的工作目录中,然后使用 git 命令来克隆 TensorFlow Object Detection API 的 GitHub 仓库,例如执行 `git clone https://github.com/tensorflow/models.git`。 3. 安装依赖项:进入克隆的模型目录中,找到 research 文件夹并进入。然后运行 `pip install -r object_detection/requirements.txt` 命令来安装所需的依赖项。 4. 下载预训练模型:在 TensorFlow Object Detection API 中,我们可以使用预训练的模型来进行目标检测。你可以从 TensorFlow Model Zoo 中下载适合你任务的模型,并将其解压到你的工作目录中。 5. 运行实例代码:在 research/object_detection 目录中,你可以找到一些示例代码,用于训练、评估和使用目标检测模型。可以通过阅读这些示例代码并根据自己的需求进行修改。例如,你可以使用 `python object_detection/builders/model_builder_tf2_test.py` 命令来运行一个模型的测试。 以上是在 macOS 上使用 TensorFlow Object Detection API 的基本步骤,你可以根据你的具体需求进行更多的深入研究和调整。希望这些信息能帮助到你!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值