前言
什么是量化交易?
量化交易是指借助现代统计学和数学的方法,利用计算机技术来进行交易的证券投资方式。量化交易从庞大的历史数据中海选能带来超额收益的多种“大概率”时间以指定策略。用数据模型验证以及固化这些规律和厕所,然后严格执行已固化的策略来指导投资,以求获得可以持续的、稳定切高于平均收益的超额回报。
量化交易起源于上世纪七十年代的股票市场,之后迅速发展和普及,尤其是在期货交易市场,程序化逐渐成为主流。有数据显示,国外成熟市场期货程序化交易已占据总交易量的70-80%,而国内则刚刚起步。手工交易中的情绪拨动等弊端越来越成为盈利的障碍,而程序化交易天然而成的精准行,100%执行率则为它的盈利带来了优势。
【----帮助学习量化交易,以下所有学习资料文末免费领!----】
量化交易的优缺点
量化交易被大多数金融机构使用,目前也渐渐被许多个人投资者使用,同许多其他交易方式一样,它有自己的优缺点:
优点
可快速进行大量数据收集和分析,极大缩减目标选择的工作量。
当设定交易操作触发点后,交易可自动进行,减小了日常投资的工作量。
使用计算机数学模型来理性分析行情,判断操作方式,有效避免人为情绪的干扰。
缺点
单一的量化交易模型无法始终在动态市场中有效,需定期调整参数来适应市场的大环境变化。
量化交易平台有哪些?
量化交易的使用平台目前主要是各大金融机构、对冲基金等需要分析大量交易数据的平台。
也有越来越多的个人,在学会了计算机语言后自行编写交易程序,来进行更符合自身投资特色的金融交易。
可以编写量化交易的平台主要是目前几大计算机语言编写程序,如C/C++、MATLAB、或 Python语言编写平台。
学习量化交易的平台目前非常热门,通常会提供较完整的课程体系,从数学、逻辑、计算机语言以及金融学知识等几方面来培养高端量化交易员。
如何搭建Python量化交易系统?
量化交易系统可通过多种计算机语言来编写,而Python作为当下最流行的计算机语言,其使用率在多种语言中位居第一。
Python是一种跨平台兼容的高级编程语言,开源环境拥有多个专有的专业库函数,比如:
- Scipy、numpy、pandas、matplotlib、quantopian、Zipline、TA-Lib、Pybacktest等可快速开发无障碍量化交易策略。
- Tensorflow、seaborn、scikit learn、Keras、plotly、stats可帮助交易模型进行更有效的数据挖掘和交易执行。
- SpyderIDE优化了交易模型中的数据可视化,使财务分析变得更直观简易。
- PyAlgoTrade作为Python独家算法交易库函数,专注于纸面交易、回溯测试、实时交易和技术分析,带来更高效的量化交易。

使用Python作为计算机语言来编写交易模型和所有量化交易模型制定过程一样,由策略识别、策略回测、执行系统和风险管理构成。
但Python的优点在于,在所有过程中,其计算机语言更易懂,逻辑排序更有条理性,并且提供多个独家库函数可直接调用。
- 在策略识别阶段,可根据自身需要的交易特点来调用多个库函数,来编写更适合自己的交易策略。
- 策略回测阶段,专业的库函数可进行更全面的数据回测,以获得更准确的回测结果,保证前期编写的交易模型更有效力。
- 执行系统方面,因为语言逻辑的清晰性,使模型执行时出现BUG的概率大为降低,不错过任何投资获益点。
- 风险管理过程中,因为语言清晰,所以很容易找到调整点,进行数据细微调整来控制必须的风险管理,而不影响整个交易模型的完整运行。
读者福利:知道你可能对Python感兴趣,便准备了这套python学习资料
无论你是对Python感兴趣,还是想要多学一份技能提高工作效率,扎实的学习好Python相关知识是重中之重!在现在的互联网行业,无论是大厂还是小公司,招聘人才的最核心要求是技术能力,只有自己的能力和岗位匹配的时候,你才能获得更多的工作机会。
资料包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等学习教程。带你从零基础系统性的学好Python!
零基础Python学习资源介绍
👉Python学习路线汇总👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)

入门学习视频

👉实战案例👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。


👉100道Python练习题👈
检查学习结果。
👉面试刷题👈



资料领取
这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以点击下方微信卡片免费领取 ↓↓↓【保证100%免费】
或者
【点此链接】领取
好文推荐
了解python的前景:https://blog.csdn.net/xiqng17111342931/article/details/127705925
了解python的副业:https://blog.csdn.net/xiqng17111342931/article/details/127872402

量化交易是一种利用统计学和数学方法,借助计算机自动执行交易的策略。它能快速处理大量数据,减少人为干扰。Python因其易用性和丰富的库函数(如Scipy、numpy、pandas等)在量化交易中广泛应用,用于策略识别、回测、执行系统和风险管理。文章还提到,Python量化交易系统构建包括策略识别、回测、执行和风险管理四个步骤,并提供了相关学习资源。
1892

被折叠的 条评论
为什么被折叠?



