光和物质的猜想

光通过任何绝对距离的绝对时间一样,所以有折射、反射、吸收

 折射:在介质中为了在规定时间内到达,会选择较短距离

 反射:不能进入物体

 吸收:进入物体物体后不能维持绝对速度,光能量消失转换

光进入介质,波长会变短,速度v变慢,折射率=c/v

假设物体以光速运行,物体的各种状态都处于维持状态,都不变化。

而光是一种能量,只有以光速【绝对速度】运转,能量才能维持,一旦低于光速,能量就处于减弱状态,一直到消失【被吸收】


物质就是能量被封闭到一定空间,一定条件下,溢出能量,物质质量会减少,也可以说是物质是一定数量的光在一定空间内维持

可以把光看成质量微小到极致的物质,以光速运行才存在的东西。任何物质都是有光构成的,光局限在一定空间就构成了物质。


电场:电子或质子对空间的一种扭曲

磁场:扭曲空间的变化,导致空间的运动,就是磁场

引力场:扭曲的空间对外界空间的作用


太阳的光,可以看成一种正能量,还有一种负能量的光

电子:由一定量正能量的光局限的一定空间,构成

基本元素:有一定正能量和一定负能量组合到一定空间【可以看成8字空间,由2个独立空间构成】,成中性

反电子:由一定负能量的光局限到一定空间构成

中子:由基本元素构成的球面,球心是空的。

质子:由基本元素构成的球面,球心是一个反电子


这样就可以解释:为什么质子周围有电子吸引了。


核聚变:要想2个独立的原子核结合到一起,构成8字的2个球面,必定要减少一定的基本元素,变成了能量

核裂变:当质子的数量很多,结合的一起的时候,质子中心的反电子的排斥力就很明显了,这样一个原子很容易分裂成2个或多个原子

质子如何变成中子:强力下,质子中心的反电子被溢出和电子结合成能量消失,中心没有了反电子,球的直径变小。

关于黑洞:很强力下,所有反电子都溢出和电子化成能量,基本元素的球形结构也被破坏,变成实心球,这个实心球一直变大,整个黑洞就构成了1个大的由基本元素构成的实心球。


阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 哥德巴赫猜想是指任何一个大于 2 的偶数都可以写成两个质数之和的形式。下面是使用 Python 代码来验证哥德巴赫猜想的实现: ```python def is_prime(n): """ 判断一个数是否为质数 """ if n <= 1: return False for i in range(2, int(n ** 0.5) + 1): if n % i == 0: return False return True def goldbach_conjecture(n): """ 验证哥德巴赫猜想 """ if n % 2 != 0 or n <= 2: return False for i in range(2, n // 2 + 1): if is_prime(i) and is_prime(n - i): return True return False if __name__ == '__main__': assert goldbach_conjecture(4) == True assert goldbach_conjecture(6) == True assert goldbach_conjecture(8) == True assert goldbach_conjecture(28) == True assert goldbach_conjecture(30) == True assert goldbach_conjecture(32) == True assert goldbach_conjecture(100) == True ``` 这段代码首先定义了一个用于判断质数的函数 `is_prime`,接着定义了一个用于验证哥德巴赫猜想的函数 `goldbach_conjecture`。在 `goldbach_conjecture` 函数中,首先判断输入的数是否为偶数,如果不是则返回 False;接着遍历从 2 到 n/2 的数,判断它们是否为质数以及 n 减去这个数是否也是质数,如果是,则返回 True,否则继续遍历。最后如果没有找到符合要求的两个质数,就返回 False。在主函数中,我们对一些例子进行验证。 ### 回答2: 哥德巴赫猜想是一项数学猜想,它的内容是任何一个大于2的偶数都可以表示成两个素数之和。哥德巴赫猜想尚未被证明,但它是数论领域中一个重要而有趣的问题。 在Python中,我们可以编写一个程序来验证哥德巴赫猜想。思路是遍历所有的偶数,然后检查是否可以找到两个素数的和等于该偶数。 首先,我们需要编写一个函数来判断一个数是否是素数。素数指的是只能被1和自身整除的数,不包括1和0。我们可以使用一个循环来检查该数是否能够被从2到它的平方根的任意数整除,如果存在整除的情况,则该数不是素数。 接下来,我们可以编写一个循环来遍历所有的偶数。对于每一个偶数,我们再次使用一个循环来遍历从2到该偶数的一半之间的数,判断是否存在两个素数的和等于该偶数。 如果找到了满足条件的两个素数,我们可以打印输出该偶数和对应的两个素数,然后结束程序。如果在结束循环后没有找到满足条件的两个素数,我们可以打印输出"哥德巴赫猜想成立"。 以下是一个简单的实现示例: ```python import math def is_prime(n): if n <= 1: return False for i in range(2, int(math.sqrt(n)) + 1): if n % i == 0: return False return True def goldbach_conjecture(): for even_number in range(4, 1000, 2): found = False for prime1 in range(2, even_number // 2 + 1): prime2 = even_number - prime1 if is_prime(prime1) and is_prime(prime2): print(f"{even_number} = {prime1} + {prime2}") found = True break if not found: print("哥德巴赫猜想成立") goldbach_conjecture() ``` 这个程序会从4开始遍历到1000的所有偶数,并尝试找到满足条件的两个素数的和。如果找到了,则会打印输出对应的偶数和两个素数,否则打印"哥德巴赫猜想成立"。注意,这个示例只是一个简单的实现,可能不够高效,也可能不适用于非常大的偶数。实际上,哥德巴赫猜想对于非常大的偶数还没有得到完全验证。 ### 回答3: 哥德巴赫猜想是一个数论问题,提出者是德国数学家哥德巴赫。它的内容是:每个大于2的偶数都可以表示成两个质数的和。这个猜想在数学界引起了广泛的兴趣和研究。 为了验证哥德巴赫猜想,可以使用Python编程语言进行计算和验证。下面是一个使用Python代码解决哥德巴赫猜想的简单示例: ```python def is_prime(n): if n <= 1: return False for i in range(2, int(n**0.5) + 1): if n % i == 0: return False return True def goldbach_conjecture(n): if n <= 2 or n % 2 != 0: return "输入有误,请输入一个大于2的偶数" # 寻找两个质数的和等于给定的偶数n for i in range(2, n//2 + 1): if is_prime(i) and is_prime(n-i): return (i, n-i) return "找不到满足条件的两个质数" # 测试 n = int(input("请输入一个大于2的偶数:")) result = goldbach_conjecture(n) print(result) ``` 通过上述代码,我们可以输入一个大于2的偶数n,然后计算并验证是否存在两个质数的和等于n。如果满足猜想条件,程序会返回这两个质数,否则会提示找不到满足条件的两个质数。 当然,值得注意的是,哥德巴赫猜想至今仍未被严格证明,目前只是被广泛认为是正确的。因此,编写的程序只能验证猜想在某些情况下是成立的,但不能证明其在所有情况下都成立。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiuzhentianting

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值