代码随想录算法训练营第三十五天 | 01背包问题(二维和一维)、416.分割等和子集

01背包理论基础 二维

1、题目

image-20240823181048543

2、题解

正式开始讲解背包问题!

对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背包。

如果这几种背包,分不清,我这里画了一个图,如下:

416.分割等和子集1

除此以外其他类型的背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了

之前可能有些录友已经可以熟练写出背包了,但只要把这个文章仔细看完,相信你会意外收获!

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划-背包问题

这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。

这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是O(2^n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

二维dp数组01背包

依然动规五部曲分析一波。

1、确定dp数组以及下标的含义

我们需要使用二维数组,为什么呢?

因为有两个维度需要表示,分别是:物品 和 背包容量

如图,二维数组为 dp[i][j]。

动态规划-背包问题1

那么这里 i 、j、dp[i][j] 分别表示什么呢?

i 来表示物品、j表示背包容量。

(如果想用j 表示物品,j表示背包容量 行不行? 都可以的,个人习惯而已)

我们来尝试把上面的 二维表格填写一下。

动态规划的思路是根据子问题的求解推导出整体的最优解。

我们先看把物品0 放入背包的情况:

img

背包容量为0,放不下物品0,此时背包里的价值为0。

背包容量为1,可以放下物品0,此时背包里的价值为15.

背包容量为2,依然可以放下物品0 (注意 01背包里物品只有一个),此时背包里的价值为15。

以此类推。

再看把物品1 放入背包:

img

背包容量为 0,放不下物品0 或者物品1,此时背包里的价值为0。

背包容量为 1,只能放下物品1,背包里的价值为15。

背包容量为 2,只能放下物品1,背包里的价值为15。

背包容量为 3,上一行同一状态,背包只能放物品0,这次也可以选择物品1了,背包可以放物品2 或者 物品1,物品2价值更大,背包里的价值为20。

背包容量为 4,上一行同一状态,背包只能放物品0,这次也可以选择物品1了,背包都可都放下,背包价值为35。

以上举例,是比较容易看懂,我主要是通过这个例子,来帮助大家明确dp数组的含义。

上图中,我们看 dp[1][4] 表示什么意思呢。

任取 物品0,物品1 放进容量为4的背包里,最大价值是 dp[1][4]。

通过这个举例,我们来进一步明确dp数组的含义。

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

2、确定递推公式

这里在把基本信息给出来:

重量价值
物品0115
物品1320
物品2430

对于递推公式,首先我们要明确有哪些方向可以推导出 dp[i][j]。

这里我们dp[1][4]的状态来举例:

绝对 dp[1][4],就是放物品1 ,还是不放物品1。

如果不放物品1, 那么背包的价值应该是 dp[0][4] 即 容量为4的背包,只放物品0的情况。

推导方向如图:

img

如果放物品1, 那么背包要先留出物品1的容量,目前容量是4,物品1 需要重量为3,此时背包剩下容量为1。

容量为1,只考虑放物品0 的最大价值是 dp[0][1],这个值我们之前就计算过。

所以 放物品1 的情况 = dp[0][1] + 物品1 的重量,推导方向如图:

img

两种情况,分别是放物品1 和 不放物品1,我们要取最大值(毕竟求的是最大价值)

dp[1][4] = max(dp[0][4], dp[0][1] + 物品1 的重量)

以上过程,抽象化如下:

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3、dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

动态规划-背包问题2

在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

代码初始化如下:

for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
    dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

此时dp数组初始化情况如图所示:

动态规划-背包问题7

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

如图:

动态规划-背包问题10

最后初始化代码如下:

// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的

4、确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

动态规划-背包问题3

那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

那么我先给出先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
    for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

    }
}

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

例如这样:

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

为什么也是可以的呢?

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

动态规划-背包问题5

再来看看先遍历背包,再遍历物品呢,如图:

动态规划-背包问题6

大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了

5、举例推导dp数组

来看一下对应的dp数组的数值,如图:

动态规划-背包问题4

最终结果就是dp[2][4]。

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

很多同学做dp题目,遇到各种问题,然后凭感觉东改改西改改,怎么改都不对,或者稀里糊涂就改过了。

主要就是自己没有动手推导一下dp数组的演变过程,如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。

代码如下:

#include <bits/stdc++.h>
using namespace std;

int main() {
    int n, bagweight;// bagweight代表行李箱空间

    cin >> n >> bagweight;

    vector<int> weight(n, 0); // 存储每件物品所占空间
    vector<int> value(n, 0);  // 存储每件物品价值

    for(int i = 0; i < n; ++i) {
        cin >> weight[i];
    }
    for(int j = 0; j < n; ++j) {
        cin >> value[j];
    }
    // dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值
    vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));

    // 初始化, 因为需要用到dp[i - 1]的值
    // j < weight[0]已在上方被初始化为0
    // j >= weight[0]的值就初始化为value[0]
    for (int j = weight[0]; j <= bagweight; j++) {
        dp[0][j] = value[0];
    }

    for(int i = 1; i < weight.size(); i++) { // 遍历科研物品
        for(int j = 0; j <= bagweight; j++) { // 遍历行李箱容量
            if (j < weight[i]) dp[i][j] = dp[i - 1][j]; // 如果装不下这个物品,那么就继承dp[i - 1][j]的值
            else {
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
            }
        }
    }
    cout << dp[n - 1][bagweight] << endl;

    return 0;
}

01背包理论基础 一维(滚动数组)

1、题目 )去练习

image-20240823181048543

2、题解

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

一维dp数组(滚动数组)

对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

读到这里估计大家都忘了 dp[i][j]里的i和j表达的是什么了,i是物品,j是背包容量。

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

一定要时刻记住这里i和j的含义,要不然很容易看懵了。

动规五部曲分析如下:

1、确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2、一维dp数组的递推公式

二维dp数组的递推公式为: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

一维dp数组,其实就上上一层 dp[i-1] 这一层 拷贝的 dp[i]来。

所以在 上面递推公式的基础上,去掉i这个维度就好。

递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

以下为分析:

dp[j]为 容量为j的背包所背的最大价值。

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 [j - 物品i重量] 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。

3、一维dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

4、一维dp数组遍历顺序

代码如下:

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

这里大家发现和二维dp的写法中,遍历背包的顺序是不一样的!

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组遍历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

(如何这里读不懂,大家就要动手试一试了,空想还是不靠谱的,实践出真知!)

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!,这一点大家一定要注意。

5、举例推导dp数组

一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:

动态规划-背包问题9

代码如下:

// 一维dp数组实现
#include <iostream>
#include <vector>
using namespace std;

int main() {
    // 读取 M 和 N
    int M, N;
    cin >> M >> N;

    vector<int> costs(M);
    vector<int> values(M);

    for (int i = 0; i < M; i++) {
        cin >> costs[i];
    }
    for (int j = 0; j < M; j++) {
        cin >> values[j];
    }

    // 创建一个动态规划数组dp,初始值为0
    vector<int> dp(N + 1, 0);

    // 外层循环遍历每个类型的研究材料
    for (int i = 0; i < M; ++i) {
        // 内层循环从 N 空间逐渐减少到当前研究材料所占空间
        for (int j = N; j >= costs[i]; --j) {
            // 考虑当前研究材料选择和不选择的情况,选择最大值
            dp[j] = max(dp[j], dp[j - costs[i]] + values[i]);
        }
    }

    // 输出dp[N],即在给定 N 行李空间可以携带的研究材料最大价值
    cout << dp[N] << endl;

    return 0;
}

416. 分割等和子集

1、题目

题目难易:中等

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:

  • 输入: [1, 5, 11, 5]
  • 输出: true
  • 解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2:

  • 输入: [1, 2, 3, 5]
  • 输出: false
  • 解释: 数组不能分割成两个元素和相等的子集.

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100
2、题解

背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。

要注意题目描述中商品是不是可以重复放入。

即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。

要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

那么来一一对应一下本题,看看背包问题如何来解决。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

以上分析完,我们就可以套用01背包,来解决这个问题了。

动规五部曲分析如下:

1、确定dp数组以及下标的含义

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

本题中每一个元素的数值既是重量,也是价值。

套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

有录友可能想,那还有装不满的时候?

拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。

而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。

2、确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

3、dp数组如何初始化

在01背包,一维dp如何初始化,已经讲过,

从dp[j]的定义来看,首先dp[0]一定是0。

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。

代码如下:

// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);

4、确定遍历顺序

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
    for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
        dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
    }
}

5、举例推导dp数组

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:

416.分割等和子集2

最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。

综上分析完毕,C++代码如下:

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = 0;

        // dp[i]中的i表示背包内总和
        // 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
        // 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
        vector<int> dp(10001, 0);
        for (int i = 0; i < nums.size(); i++) {
            sum += nums[i];
        }
        // 也可以使用库函数一步求和
        // int sum = accumulate(nums.begin(), nums.end(), 0);
        if (sum % 2 == 1) return false;
        int target = sum / 2;

        // 开始 01背包
        for(int i = 0; i < nums.size(); i++) {
            for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
            }
        }
        // 集合中的元素正好可以凑成总和target
        if (dp[target] == target) return true;
        return false;
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数
  • 22
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值