join执行过程的几种常见选择

     平时经常会遇到预估sql语句效率的问题,尤其是联表join还是单表n+1然后应用层merge的选择情况,如果对于join在存储引擎层面的执行过程完全没有了解,应该是很难评估的,这方面每个人或多或少有些经验或认识,看博客正好遇到,觉得不错。见贤思齐,看到好的文章在此搬运过来沉淀传播,HASH JOIN ,MERGE JOIN ,NESTED LOOP 比较,在此表示感谢!


NESTED LOOP:
     对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择。在嵌套循环中,内表被外表驱动,外表返回的每一行都要在内表中检索找到与它匹配的行,因此整个查询返回的结果集不能太大(大于1 万不适合),要把返回子集较小表的作为外表(CBO 默认外表是驱动表),而且在内表的连接字段上一定要有索引。当然也可以用ORDERED 提示来改变CBO默认的驱动表,使用USE_NL(table_name1 table_name2)可是强制CBO 执行嵌套循环连接。
 
HASH JOIN :
     散列连接是CBO 做大数据集连接时的常用方式,优化器使用两个表中较小的表(或数据源)利用连接键在内存中建立散列表,然后扫描较大的表并探测散列表,找出与散列表匹配的行。
这种方式适用于较小的表完全可以放于内存中的情况,这样总成本就是访问两个表的成本之和。但是在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段,此时要有较大的临时段从而尽量提高I/O 的性能。
     也可以用USE_HASH(table_name1 table_name2)提示来强制使用散列连接。如果使用散列连接HASH_AREA_SIZE 初始化参数必须足够的大,如果是9i,Oracle建议使用SQL工作区自动管理,设置WORKAREA_SIZE_POLICY 为AUTO,然后调整PGA_AGGREGATE_TARGET 即可。
 
 
MERGE JOIN排序合并连接
     通常情况下散列连接的效果都比排序合并连接要好,然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序合并连接的性能会优于散列连接。可以使用USE_MERGE(table_name1 table_name2)来强制使用排序合并连接
 
几种方式的操作方式
merge join
1、对连接的每个表做table access full;
2、对table access full的结果进行排序。
3、进行merge join对排序结果进行合并。
     在全表扫描比索引范围扫描再通过rowid进行表访问更可取的情况下,merge join会比nested loops性能更佳。当表特别小或特别巨大的时候,实行全表访问可能会比索引范围扫描更有效。mrege join的性能开销几乎都在前两步。
 
hash join
     对两个表进行全表扫描,然后oracle读取涉及连接的其中一个表,并且在内存里创建来自表的连接列的唯一关键字的位图。当读取和处理第二个表的行时,创建值的位图被用做过滤器。如果一个行成功的通过位图过滤,则hash算法用于数据查找和后来的连接。(这里涉及数学问题,我也弄的不是很清楚)。以下条件下hash join可能有优势:两个巨大的表之间的连接;在一个巨大的表和一个小表之间的连接。
 
Nested Loops
     会循环外表(驱动表),逐个比对和内表的连接是否符合条件。在驱动表比较小,内表比较大,而且内外表的连接列有索引的时候比较好。当SORT_AREA空间不足的时候,Oracle也会选择使用NL。基于Cost的Oracle优化器(CBO)会自动选择较小的表做外表。
 
连接方式总结:
1)、嵌套循环(nest loop):

    对于被连接的数据子集较小的情况,嵌套循环连接是较好的选择。在嵌套循环中,外表驱动内表,外表返回的每一行都要在内表中检索找到它匹配的行,因此整个查询返回的结果集不能太大(大于10000不合适),要把返回子集较小的表作为外表(驱动表),而且在内表的连接字段上一定要有索引。
2)、哈希连接(hash join):

    哈希连接是大数据集连接时常用的方式,优化器使用两个表中较小的表,利用连接键在内存中建立散列表,然后扫描较大的表并探测散列表,找出与散列表匹配的行。这种方式适用于较小的表完全可以放入内存的情况,这样成本就是访问两个表的成本之和。但是在表很大的情况下并不能完全放入内存,这时优化器将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段。哈希连接只能应用于等值连接(如WHERE A.COL3 = B.COL4)、非等值连接(WHERE A.COL3 > B.COL4)、外连接(WHERE A.COL3 = B.COL4(+))。
3)、排序合并连接(Sort Merge Join )

     通常情况下哈希连接的效果都比排序合并连接要好。然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序归并连接的性能会忧于哈希连接。


     平时经常会遇到预估sql语句效率的问题,尤其是联表join还是单表n+1然后应用层merge的选择情况,如果对于join在存储引擎层面的执行过程完全没有了解,应该是很难评估的,这方面每个人或多或少有些经验或认识,看博客正好遇到,觉得不错。见贤思齐,看到好的文章在此搬运过来沉淀传播,HASH JOIN ,MERGE JOIN ,NESTED LOOP 比较,在此表示感谢!



在Oracle数据库中,常见几种执行计划包括全表扫描、索引扫描、索引范围扫描和连接Join)操作等。它们的区别如下: 1. 全表扫描(Full Table Scan): 全表扫描是指对整个表进行顺序读取,适用于需要读取大部分或全部数据的情况。它会遍历整个表,并将相关数据读入内存进行处理。全表扫描适用于数据量较小或查询条件无法使用索引的情况。 2. 索引扫描(Index Scan): 索引扫描是通过使用索引来定位符合查询条件的数据。它会使用B树或位图索引来快速定位所需的数据块,然后读取相应的数据。索引扫描适用于查询条件与索引列匹配的情况,能够快速定位所需的数据。 3. 索引范围扫描(Index Range Scan): 索引范围扫描是在索引扫描的基础上,根据查询条件的范围进行进一步的筛选。它可以通过索引的有序性,有效地定位满足范围条件的数据块,并读取相应的数据。索引范围扫描适用于查询条件涉及范围查询(如BETWEEN、大于或小于等)的情况。 4. 连接操作(Join): 连接操作是在多个表之间根据关联条件进行数据匹配和合并。它可以通过嵌套循环连接哈希连接或合并连接等方式来执行连接操作通常需要使用索引来加快匹配过程,以避免全表扫描。 这些不同的执行计划适用于不同的查询条件和数据访问方式。Oracle优化器会根据查询语句、表结构和统计信息等因素,选择最合适的执行计划来执行查询操作。理解不同执行计划的特点及其适用场景,可以帮助优化查询性能和提高数据库的响应速度。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值