Ericam_
码龄8年
关注
提问 私信
  • 博客:385,579
    社区:1
    动态:40
    385,620
    总访问量
  • 34
    原创
  • 570,868
    排名
  • 862
    粉丝
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2016-12-06
博客简介:

Ericam_

博客描述:
个人博客:https://ericam.top / 帅气的人已经关注我了哦~
查看详细资料
个人成就
  • 获得903次点赞
  • 内容获得532次评论
  • 获得3,357次收藏
  • 代码片获得11,264次分享
创作历程
  • 11篇
    2022年
  • 7篇
    2021年
  • 4篇
    2020年
  • 5篇
    2019年
  • 6篇
    2018年
  • 1篇
    2017年
成就勋章
TA的专栏
  • Gan zoos🦓
    8篇
  • 计算机视觉
    5篇
  • 深度学习
    5篇
  • Go
    1篇
  • c/c++
    3篇
  • 游戏开发
    1篇
  • Django
    2篇
  • Python
    7篇
  • 其它
    4篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

StyleFlow简明阅读:使用持续流完成属性编辑

现在可以通过unconditiongan(例如Stylegan)生成高质量、多样化、逼真的图像,但是控制生成过程的属性选项有限、同时很难保证输出的质量,此外由于ganlatentspace的纠缠特性,沿着一个属性进行编辑很容易导致其他属性的篡改。本文在条件探索纠缠潜空间的背景下,研究了属性条件抽样和属性控制编辑两个子问题。作为GAN潜空间中条件连续正规化流的一个实例,我们将条件探索表述为由属性特征决定的条件连续正规化流,从而将StyleFlow作为这两个子问题的一个简单、有效和鲁棒的解决方案。...
原创
发布博客 2022.07.14 ·
1750 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

PTI:通过枢轴完成人脸投影

paperPTI: Pivotal Tuning for Latent-based Editing of Real Images2022 ACM TOGStyleGan 人脸编辑相关人脸投影paper code在StyleGAN中,编辑图像前,必须首先将图像投影到latent space,然后事实证明,StyleGAN的latent space在失真和可编辑性之间存在固有平衡,即图像在近似保持原始外观的情况下存在一定令人信服的可编辑性。实际上,生成器域外的图像在保留面部ID信息的情况下.
原创
发布博客 2022.05.31 ·
2110 阅读 ·
5 点赞 ·
4 评论 ·
6 收藏

STIT:StyleGan的视频编辑之旅

利用Stylegan完成视频人脸编辑
原创
发布博客 2022.05.17 ·
1163 阅读 ·
2 点赞 ·
2 评论 ·
1 收藏

HyperStyle:利用超网络完成人脸反演

paperHyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing2022 CVPRStyleGan反演相关paper code pageAbstract:将真实图像反演到 StyleGAN 的latent space是一个充分研究的问题。然而,现有方法应用于现实世界的场景效果仍然一般,这是因为图像重建和可编辑性之间存在内在权衡:可以准确表示真实图像的潜在空间区域通常会受到语义控制的影响产生退
原创
发布博客 2022.05.12 ·
2346 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

Stylegan3-editing:未对齐的图像也能反演编辑?

titleThird Time’s the Charm? Image and Video Editing with StyleGAN3authorYuval AlalufLink论文地址CodeStyleGAN is arguably one of the most intriguing and well-studied generative models, demonstrating impressive performance in image generation, invers.
原创
发布博客 2022.04.14 ·
1660 阅读 ·
2 点赞 ·
12 评论 ·
4 收藏

深入理解StyleGAN-v2 Generator结构

这篇文章主要用于 通过解读Stylegan2的generator代码深入理解模型结构请谨慎阅读,如有错误请及时指出,感谢支持与理解!注:解读的项目为rosinality实现的pytorch版本stylegan2。项目地址:githubmodels.py文件class Generator(nn.Module): def __init__( self, size, #输出图像的size,如果是ffhq的话就是1024 style_dim..
原创
发布博客 2022.04.10 ·
4108 阅读 ·
10 点赞 ·
2 评论 ·
15 收藏

Cartoon-Stylegan2:快来将你的图片漫画风

titleCartoon-Stylegan : Fine-Tuning stylegan2 for cartoon face generationauthorJihye BackLink论文地址:hereCode:hereAbstract最近的研究表明,在无监督图像到图像转换方面取得了显著的成功。然而,由于数据的不平衡,学习各个领域的联合分布仍然具有很大的挑战性。尽管现有模型可以生成逼真的目标图像,但很难保持源图像的结构。另外,在多个领域的大数据上训练生成模型需要大量的时间和计算机资.
原创
发布博客 2022.04.09 ·
4729 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

【面部重演+3D控制】PIRender:控制你想控制的人物

论文Link代码地址前言​ 该项目主要实现了face-reenactment,人脸3D控制和语音驱动图像,不局限于特定人物,使用预训练模型可以针对任一人物完成。(项目源代码里没有写出,简单修改一下就可以)。​ 下面给出一点我个人实验过程中的截图(vox数据集实验截图可见项目地址或论文):由于是自定义的源图,可能加载图像通道需要调整,所以会出现有点发白的情况。实验过程中发现针对自定义的图,wrap效果较好,editing后的图眼睛和牙齿很失真。(这个可能是由于驱动图像人物是欧美人的原因)A.
原创
发布博客 2022.03.30 ·
5993 阅读 ·
5 点赞 ·
9 评论 ·
9 收藏

【FaceEdit论文阅读】Latent to Latent: A Learned Mapper for Identity Preserving Editing

论文:Latent to Latent: A Learned Mapper for Identity Preserving Editing of Multiple Face Attributes in StyleGAN-generated Images🔗Link:论文地址摘要:Several recent papers introduced techniques to adjust the attributes of human faces generated by unconditional G.
原创
发布博客 2022.03.22 ·
2476 阅读 ·
4 点赞 ·
3 评论 ·
5 收藏

pixel2style2pixel(pSp)实现解读【二】 -- 代码层面

前言项目文件介绍主要关注encoder部分的代码设计,所以介绍下项目中的文件:(1)models文件夹下psp.py其实这就是psp的模型定义文件了,里面就包含了一个class类,后续的使用主要就是调用该文件夹下pSp类(2)encoders文件夹下helpers.py在这个文件夹下主要定义了bottlenck模型以及几个它的变种 【用于将真实图像生成不同维度的向量】(3)encoders文件夹下psp_encoder.pypsp的encoder实现文件代码解读(一)encoder.
原创
发布博客 2022.02.24 ·
2612 阅读 ·
5 点赞 ·
2 评论 ·
10 收藏

pixel2style2pixel(pSp)实现解读【一】 -- 理论层面

前言pixel2stylepixel是人脸编辑中比较重要的encoder方法,这里针对理论部分作简要记录。论文Code介绍stylegan可以随机生成图片(人脸、动漫、汽车等),通过MLP实现了一个从离散的潜空间到人脸图像的可控、可编辑的人脸生成器。但是当我们想对真实世界的人脸图像进行人脸编辑时,需要首先把图像投射到latent space里生成latent code,然后再通过stylegan进行重建,但多数情况下,重建的结果很差、同时耗时很大。同时,许多方法选择将图像编码到w空间生成lat.
原创
发布博客 2022.02.24 ·
6173 阅读 ·
7 点赞 ·
6 评论 ·
20 收藏

从零带你入门stylegan~stylegan3的技术细节

讲解stylegan,stylegan2,stylegan3的论文以及模型细节,方便快速入门stylegan技术。
原创
发布博客 2021.12.19 ·
50310 阅读 ·
143 点赞 ·
30 评论 ·
413 收藏

写个邮递员算法问题说我营销推广,我推广给你邮递员嘛?吐了。

发布动态 2021.04.30

邮递员算法问题之c++实现

这里写目录标题前言演示问题介绍思路代码复现尾言前言大家好,我是Ericam_。近些时间,通过一个项目接触到了邮递员算法问题,还是挺有意思的(虽然做起来经历了不少的困难)。最后勉强复现了吧,写个文章就当记录一下。演示问题介绍1962年有管梅谷先生提出中国邮递员问题(简称CPP)。一个邮递员从邮局出发,要走完他所管辖的每一条街道,可重复走一条街道,然后返回邮局。任何选择一条尽可能短的路线。当邮递员可以每条道路仅走一次便返回起点,那该路线一定是最短的。而欧拉回路恰巧满足这种条件。那什么才.
原创
发布博客 2021.04.29 ·
3545 阅读 ·
15 点赞 ·
4 评论 ·
31 收藏

入门级中文分词项目 【关键词计算,文本摘要生成】,还不来收藏学习!

目录前言项目演示中文分词近义词合并关键词计算1.tf-idf算法2. 计算步骤3.代码实现摘要生成textrank算法计算步骤代码实现尾言前言大家好,我是Ericam_希望本篇分享可以给大家带来帮助~愿我们都在代码世界的道路上渐行渐远。当然啦????,也希望一键三连,拜托啦拜托啦。(你们会心疼gie gie嘛(●ˇ∀ˇ●))好久没写文章了,真是懒癌上身,借着今天的闲暇来分享一下经验吧。最近完成了一个小项目,采用中文分词,然后完成同义词合并、计算TF-IDF值来提取关键词、最后通过textr
原创
发布博客 2021.04.26 ·
720 阅读 ·
4 点赞 ·
4 评论 ·
9 收藏

一步到位,GO开发环境配置

大家好,我是Ericam_以下介绍为在windows环境下GO语言开发环境配置原创不易,请多点赞,如若三连,感激不尽????下载安装GO下载地址1.进入到官网,选择windows版本的安装本进行安装。2.接下来点击安装包进行安装。安装过程中可以选择更改安装目录。3.安装成功后,打开命令行,输入go,会出现如下图所示。配置GOPATH在开发过程中有些文件在编译时需要被打包,所以需要配置一下GOPATH。1.建立一个文件夹(即你的开发目录)假设为E盘下的GO文件夹。2.在该文件夹下
原创
发布博客 2021.03.22 ·
229 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

ONNX简明教程

前言大家好,我是Ericam_由于项目需要,查阅了ONNX相关资料,整理了一篇小笔记吧~如有错误,欢迎指正一. 简介    ONNX (Open Neural Network Exchange)- 开放神经网络交换格式,作为框架共用的一种模型交换格式,使用 protobuf 二进制格式来序列化模型,可以提供更好的传输性能我们可能会在某一任务中将 Pytorch 或者 TensorFlow 模型转化为 ONNX 模型(ONNX 模型一般用于中间部署阶
原创
发布博客 2021.03.16 ·
29584 阅读 ·
44 点赞 ·
17 评论 ·
280 收藏

python爬虫爬取知乎图片,轻松解决头像荒

前言        最近逛知乎,发现了一个问题。        回答下很多好看的头像,因此我动了一个心思,想要制作一个小网页,可以随机返回一款好看的情头。心思既起,当然要开始付诸行动。但是想要制作如此一个网页,后台也需要拥有足够的情头头像数据,毕竟巧妇难为无米之炊嘛。        所以通过本文,分享给大家爬取知乎问答下头像的方法~      &n.
原创
发布博客 2021.01.29 ·
1499 阅读 ·
3 点赞 ·
5 评论 ·
12 收藏

图片标注工具Labelme-简明使用教程

前言记录Labelme的使用方法,方便快速上手使用。labelme简介LabelMe 可用于实例分割,语义分割,目标检测,分类任务的数据集标注工作。在线标注版本python版本labelme官方文档分类标注:Classification目标检测标注:Object Detection语义分割标注:Semantic Segmentation实例分割标注:Instance Segmentation视频标注:Video Annotation其他形式标注:LabelMe Primitives
原创
发布博客 2021.01.06 ·
28186 阅读 ·
24 点赞 ·
11 评论 ·
211 收藏

Pytorch基于全连接神经网络训练MNIST之入门篇

前言其实网上利用全连接神经网络来训练MNIST数据集的文章很多,但是多数是以实现为主。本文更偏向于一个实验笔记,来一步一步递进测试模型优化的过程,以及记录在训练过程中的疑惑与思考。实验环境这次并没有将代码放在服务器上跑,所以也没有用到GPU,所以当你需要使用GPU来训练模型时,请自行修改代码。数据准备本文所需要的数据集为MNIST数据集,至于数据集的加载方式已经于另一篇文章十分钟搞懂Pytorch如何读取MNIST数据集讲明。正文1.使用简单的三层全连接神经网络#简单的三层全连接神经网络c
原创
发布博客 2020.10.20 ·
4832 阅读 ·
5 点赞 ·
0 评论 ·
30 收藏
加载更多