Python算法——求数组中两个元素最小距离(动态规划)

这篇博客介绍了如何在包含重复元素的数组中,使用动态规划方法找到两个指定数字num1和num2之间出现位置的最小距离。首先解释了蛮力法的思路,然后详细阐述了动态规划的执行过程,并提供了代码实现。最后分析了两种方法的时间复杂度,指出动态规划在效率上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要求:

       给定一个数组,数组中含有重复元素,给定两个数字num1和num2,求这两个数字在数组中出现位置的最小距离。

分析:

       方法一:蛮力法

       主要思路为:对数组进行双重遍历,外层循环遍历查找num1,只要遍历到num1,内层循环对数组从头开始遍历找num2,每当遍历到num2,就计算他们距离dist。当遍历结束后最小的dist值就是他们最小的距离。

       方法二:动态规划

       什么是动态规划? 

       假设给定数组[4,5,6,4,7,4,6,4,7,8,5,6,4,3,10,8],num1 =4,num2=8。执行过程如下:

       ①在遍历的时候首先会遍历到4,下标为lastpos1=0,由于此时没有遍历到num2,因此没必要计算num1与num2的最小距离;

       ②接着往下遍历,又遍历到num1=4,更新lastpos1=3;

       ③接着往下遍历,又遍历到num1=4,更新lastpos1=5;

       ④接着往下遍历,又遍历到num1=4,更新lastpos1=7;

       ⑤接着往下遍历,又遍历到num2=8,更新lastpos2=9;此时由于前面已经遍历过num1&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值