Python算法——求集合的所有子集

要求:

       有一个集合,求其全部子集(包含集合自身)。例如集合[1,2,3]其全部子集为:<∅,1,2,12,3,13,23,123>

分析:

       方法一:位图法

       ①使用两层循环,外层循环为子集个数,对于集合长度为N,子集个数为2^{N}。外层循环每循环一次一个子集。内层循环用来判断二进制下标为i的位置数是否为"1",如果对应位为1,那么就输出这个位,如果对应位为0,那么不输出这个位。

       ②以集合[1,2,3]为例,N = len([1,2,3]),外层循环 i 取值范围为[0,7],内层循环用于判断 i 对应二进制下标为j的位置是否为1。如果 (i >>j)%2为真,那么输出此子集。

       ③当 i =0时,无论 i 对应二进制000右移0位,1位,还是2位,即(i>>j)%2始终为0(假),输出空集。

      ④当 i =1时, i 对应二进制001右移0位,即(i>>j)%2为1(真),输出[1]。 i 对应二进制001右移1位为000,即(i>>j)%2为0(假),不追加。 i 对应二进制001右移2位为000,即(i>>j)%2为0(假),不追加。最终输出[1]。

       ......

     ⑤当 i = 3时,i 对应二进制011右移0位,即(i>>j)%2为1(真),输出[1]。 i 对应二进制011右移1位为001,即(i>>j)%2为1(真),追加输出[1,2]。 i 对应二进制011右移2位为000,即(i>>j)%2为0(假),不追加。最终输出[1,2]。

       ......

    ⑥当 i = 6时,i 对应二进制110右移0位,即(i>>j)%2为0(假),输出[]。 i 对应二进制110右移1位为011,即(i>>j)%2为1(真),追加输出[2]。 i 对应二进制110右移2位为001,即(i>>j)%2为1(真),追加输出[2,3]。最终输出[2,3]。

    ⑦当 i = 7时,i 对应二进制111右移0位,即(i>>j)%2为1(真),输出[1]。 i 对应二进制111右移1位为011,即(i>>j)%2为1(真),追加输出[1,2]。 i 对应二进制111右移2位为001,即(i>>j)%2为1(真),追加输出[1,2,3]。最终输出[1,2,3]。

       方法二:迭代法

       假设原始集合s = [1,2,3],

       第一次迭代:<1>;

      第二次迭代:<1,12,2>;

      第三次迭代:<1,12,2,13,123,23,3>;

      每次迭代,都是上一次迭代的结果+上次迭代结果中每个元素都加当前迭代元素+当前迭代元素

实现代码:

#方法一
def PowerSetsBinary(items):
    N = len(items)
    for i in range(2 ** N): #子集个数,每循环一次一个子集
        combo = []
        for j in range(N): #用来判断二进制下标为j的位置数是否为1
            if(i>>j)%2:
                combo.append(items[j])
        print(combo)

PowerSetsBinary([1,2,3])

       运行结果:

[]
[1]
[2]
[1, 2]
[3]
[1, 3]
[2, 3]
[1, 2, 3]
#方法二
def getAllSubset(str):
    if str == None or len(str) < 1:
        print("参数不合理!")
        return None
    arr = []
    arr.append(str[0:1]) #str首元素
    i = 1
    while i < len(str):
        lens = len(arr)
        j = 0
        while j < lens:
            arr.append(arr[j]+str[i])
            j += 1
        arr.append(str[i:i+1])
        i += 1
    return arr

if __name__ == "__main__":
    result = getAllSubset("123")
    i = 0
    while i < len(result):
        print("["+result[i]+"]")
        i += 1

       运行结果:

[1]
[12]
[2]
[13]
[123]
[23]
[3]

性能分析:

       方法二第k次迭代的迭代次数为2^{k}-1。需要注意的是,1≤k≤n,迭代n次,总的遍历次数为:2^{n+1}-(2+n),n≥1,所以此方法时间复杂度为O(2^{N})。由于该算法中,下一次迭代需要上一次迭代结果,而最后一次迭代之后就没有下一次了。因此,假设原始集合有n个元素,在迭代过程中总共需要保存的子集个数为2^{n-1}-1,n≥1。但需要注意的是,这里只考虑子集个数,每个子集元素长度被视为1。

 

 

 

  • 28
    点赞
  • 81
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值