自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(50)
  • 资源 (6)
  • 论坛 (2)

原创 Yolo的搭建和在Windows下封装以及工程应用

概述   最近一直在研究基于深度学习的目标检测这一块,之前用过faster_rcnn和R-FCN,相对来说检测的准确率应该是可以的,但是实际的检测速度还是很不理想的,考虑实际工程的需求,所以后来想着用yolo来做目标检测,经过测试发现yolo确实是在检测速度上有很大的提高,但是调试了源码发现只是yolo的底层检测函数是满足实时的要求,而它基于视频的目标检测的demo我测试了一下大概是16FPS左右

2017-03-13 17:25:44 17074 60

原创 Windows下面用vs2013直接调用caffe的c++接口

1 概述   由于需求最经需要做火焰检测,一开始是想着用传统的机器学习算法去做,后来发现目前的火焰检测都是基于颜色来做的,在实际场景中经常会因为路灯和太阳等外部的影响导致很严重的误报,后来定了用深度学习进行火焰检测都图像进行分类图片是否发生火灾,训练数据集是张**在网上爬虫爬了几千张数据,主要是基于caffe框架训练的模型,要是想着在工程中应用,就必须想着用vs2013直接调用caffe的c++接

2017-03-13 16:52:02 9167 3

原创 Linux下基于eclipse的C++工程调用caffe的c++接口

概述  小白之前一直没有接触过Linux下面的c++编程和代码的调试,以前都是基于Windows开发的c++,用的也一直都是vs的编辑环境。现在由于实际的需求,需要在Linux下面建立c++工程去调用caffe的c++接口,从而调用基于caffe训练好的分类模型。由于没有接触过Linux下面的c++编程和调试,小白是费了老鼻子劲了,都被caffe依赖的头文件和库整无语了。下面小白详细介绍怎么脱离ca

2017-01-06 15:01:18 2540 3

原创 caffe多任务学习之多标签分类

最近在参加一个行人精细化识别的竞赛,项目里涉及了许多类别的分类,原本打算一个大的类别训练一个分类模型,但是这样会比较麻烦,对于同一图片的分类会重复计算分类网络中的卷积层,浪费计算时间和效率。后来发现现在深度学习中的多任务学习可以实现多标签分类,所有的类别只需要训练一个分类模型就行,其不同属性的类别之间是共享卷积层的。我所有的项目开发都是基于caffe框架的,默认的,Caffe中的Data层只支持单维

2016-11-15 20:50:30 15552 66

原创 caffe fine-tune策略

caffe fine-tune策略   现在随着深度学习技术的迅速发展,深度学习技术在图像和语音方向的应用已经很成熟了。目前工程上应用深度学习一般源于数据的限制都是在ImageNet pre-trained model的基础上进行微调—fine-tune。由于ImageNet数以百万计带标签的训练集数据,使得如CaffeNet之类的预训练的模型具有非常强大的泛化能力,这些预训练的模型的中间层包含非

2016-11-15 20:02:09 4436

原创 机械革命X6ti安装Ubuntu和NVIDIA的显卡驱动

最近买了一个机械革命笔记本,配置: i7 6700HQ GTX 965m  直接通过优盘启动盘安装的话,会在ubuntu14.04的启动界面挂死。这里我都试了N次了,也强制关机N次(刚买的新机子,心都痛-_-)。后来我就直接安装Ubuntu16.04,我也在网上找了许多资料和贴吧看了,也尝试了各种方法,好像网上资料不怎么多,毕竟这款机子是刚出来的。 **解决:** 1. 进入BOI

2016-10-11 14:54:20 7878 6

原创 深度学习经历过程(caffe学习过程)

深度学习记录一、 第一阶段:基本知识的学习小菜是从2016年6月初开始接触强大而神秘的Deep Learning,之前一直在学习传统的机器学习,学习DL之前,所接触的DL也就是每次参加从实验室的组会,听师姐汇报一些DL的理论知识,还有就是每次和一些大牛聊天的时候听他们说DL是多么的强大多么的牛X。今年出来实习,在我的实习老师的带领下终于可以开始DL之旅了,所以写点学习的记录,希望自己能在这

2016-09-09 15:54:19 8517

原创 Caffe学习笔记2:Windows下安装和搭建caffe框架

小菜在这里要感谢实习老师张xx,是他的无私奉献。他把他之前安装和搭建caffe框架的过程全部记录下来了写成文档了,小菜是按照他caffe学习笔记一步一步安装的,让小菜少走了许多弯路,不过小菜在安装的额过程中也出现了许多错误,小菜参考了一个大牛的博客,是博客园的以为前辈,还有小菜在讨论群里请教了一些大牛,经过不懈努力后来都一一解决了。Ø  首先去github上下载微软的caffe。https:/

2016-08-12 11:28:56 14465 7

原创 Caffe windows 下进行(微调)fine-tune 模型

小菜最近一直在学习caffe。今天小菜主要介绍一下如何在Caffe上微调网络(ps:小菜中间也出现了许多问题,不过很感谢网上的一些前辈的无私奉献),一般比较经典的深度学习模型是别人训练好的模型,例如分类模型主要是针对Imagenet的数据集进行分类的。为了适应我们自己特定的新任务(小菜的任务是分类),一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据。因为像在I

2016-07-29 09:25:23 6391 12

原创 梯度下降算法总结

梯度下降算法1.概述梯度下降法(Gradient Descent, GD)是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿

2016-07-10 11:37:15 6035

原创 双线性插值算法的详细总结

最近在做视频拼接的项目,里面用到了图像的单应性矩阵变换,在最后的图像重映射,由于目标图像的坐标是非整数的,所以需要用到插值的方法,用的就是双线性插值,下面的博文主要是查看了前辈的博客对双线性插值算法原理进行了一个总结,在这里也感谢一些大牛的博文。http://www.cnblogs.com/linkr/p/3630902.htmlhttp://www.cnblogs.com/f

2016-04-22 15:25:38 69390 11

原创 windows支持中文内容读取

wchar_t linex[1000]; FILE* f1; f1 = _wfopen(L"conf/AUTO_result.txt", L"rt+,ccs=UTF-8"); locale loc(""); wcout.imbue(loc); while (!feof(f1)) { fgetws(linex, ...

2019-08-21 20:43:57 93

转载 解决Centos7 下中文乱码

打开配置文件sudo vim /etc/locale.conf1设置语言LANG=en_US.UTF-8 # 英文 UTF-8#或者LANG=zh_CN.UTF-8 # 中文 UTF-8123456使配置生效source /etc/locale.conf# 或者 重新登陆终端连接123 ...

2018-12-04 15:07:33 344

转载 ubuntu下如何安装多版本的python之python3.6.1安装numpy,scipy等依赖包

最近需要搭建Pytorch框架,复现某个工程,需要在python3.6版本下实现。由于ubuntu14.04系统默认安装的是python2.7.6和python3.4版本,在这个地方被坑了无数次,主要是安装了python后需要安装python3.6的依赖包,用老方法装依赖包总是装到系统默认的python2.7.6下面。折腾了一晚上,坑死人了,最后还重装了一次系统。真是应了那句话不踩坑不了解事实真相

2018-01-16 21:06:03 2896

原创 NASNet学习笔记

NASNet总结论文:《Learning Transferable Architectures for Scalable Image Recognition》 注   先啥都不说,看看论文的实验结果,图1和图2是NASNet与其他主流的网络在ImageNet上测试的结果的对比,图3是NASNet迁移到目标检测任务上的检测结果,从这图瞬间感觉论文的厉害之处了,值得阅读好几篇。

2018-01-16 20:45:49 27790 4

原创 Neural Architecture Search with Reinforcement Learning论文总结

Neural Architecture Search with Reinforcement Learning论文总结论文:《Neural Architecture Search with Reinforcement Learning》 网站链接(开源代码):https://github.com/tensorflow/models1. 概述  此论文出自google Brain并发表与

2018-01-16 20:30:15 8336 1

原创 SENet学习笔记

SENet总结论文:《Squeeze-and-Excitation Networks》 论文链接:https://arxiv.org/abs/1709.01507 代码地址:https://github.com/hujie-frank/SENet1. 概述  此论文是由Momenta公司所作并发于2017CVPR,论文中的SENet赢得了ImageNet最后一届(ImageNe

2018-01-16 19:59:20 24211 4

原创 Densenet学习笔记

Densenet总结 论文:《Densely Connected Convolutional Networks》 论文链接:https://arxiv.org/pdf/1608.06993.pdf 代码的github链接:https://github.com/liuzhuang13/DenseNet Caffe版本的GitHub链接:https://github.com/shicai/

2018-01-16 19:38:08 3542

转载 YOLO论文学习笔记

之前一直在用yolo做目标检测,速度上的效果确实比rcnn、fast_rcnn以及faster_rcnn快得多了。其主要的训练机制跟它们也不一样,把检测看作是一种回归的问题,其主要的特点就是:   1 整个图片进行训练,检测的时候也是整个图片进行检测直接获得bounding boxes和class probabilities。 2 损失函数的设计。3 针对lager object和small o

2017-04-10 21:32:17 4206

原创 Ubuntu+ cuda7.5+cudnn4.0+opencv3.0+python caffe安装配置

Ubuntu16.04下面安装caffe的教程: http://blog.csdn.net/zx10212029/article/details/51778540 下面步骤是基于Ubuntu14.04安装的过程: 安装Ubuntu14.04   自己分区,分了四个区(/、/home、/boot、swap) 安装依赖的库:sudo apt-get install freeglut3-dev

2017-03-13 16:31:49 817

原创 win10中vs2013和cuda7.5的一些问题

最近在win10上安装了cuda7.5,确实安装成功了。但是后面用基于vs2013使用gpu工程老是提示错误:<div> 错误 1 error MSB4062: 未能从程序集 C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\V120\BuildCustomizations\Nvda.Build.CudaTasks.v7.5.dll 加载任务“N

2017-02-13 11:17:26 2353

原创 C++ 获取文件下的所有文件的名字

#include<iostream>#include<opencv2\opencv.hpp>#include<string>#include<vector>using namespace std;using namespace cv;void getFiles(string path, vector<string>& files){ //文件句柄 long hFi

2017-01-20 14:32:39 1282

原创 R-CFN学习笔记

论文:《R-FCN: Object Detection via Region-based Fully Convolutional Networks》概述  此论文是微软亚洲研究院的代季峰在2016年提出来的一篇目标检测的很牛的论文,相比较以前的rcnn、spp、fast_rcnn以及faster_rcnn在检测速度上有了很大的提升,我自己也在caffe框架里面用了R-FCN,网络结构主要是用了re

2016-12-21 17:17:39 974

原创 Network in Network学习笔记

论文:《Network in Network》 概述:   此论文是2014年的一篇比较厉害的paper,该论文改进了传统的cnn网络使得网络模型参数很少,也为后续的Googlenet和resnet以及目标检测网络中提出的全卷积共享提供了一个很好的开端,小菜也是在学习主流的深层网络模型的论文时发现许多论文中都有提到NIN这篇论文,所以专门挑了时间看了这篇论文,觉得这篇论文的确不错,论文中的网络整

2016-12-14 17:33:45 7150

转载 计算机视觉(ComputerVision, CV)相关领域的网站链接

以下链接是关于计算机视觉(ComputerVision, CV)相关领域的网站链接,其中有CV牛人的主页,CV研究小组的主页,CV领域的paper,代码,CV领域的最新动态,国内的应用情况等等。打算从事这个行业或者刚入门的朋友可以多关注这些网站,多了解一些CV的具体应用。搞研究的朋友也可以从中了解到很多牛人的研究动态、招生情况等。总之,我认为,知识只有分享才能产生更大的价值,真诚希望下面的链接能对朋

2016-10-21 14:23:56 1710

原创 Faster_rcnn训练自己的数据集

在看了一些深度学习的目标检测的论文后,想着去用开源的代码去跑一下,看看实际的效果。于是小菜就想着直接把faster_rcnn用起来,包括前期的faster_rcnn安装和配置并运行其中的一个demo.py。后面是用自己的数据集训练faster_rcnn的模型。  1. 准备工作:1) 搭建caffe框架这个可以参考linux先搭建caffe的笔记。2) 安装第三方依赖包:Cytho

2016-09-27 18:03:08 3638

翻译 Faster Rcnn论文总结

论文:《Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks》一、 概述  此论文是由业界大牛何凯明在2015年发表的一篇经典论文,目前最先进的目标检测网络需要先用区域建议算法推测目标位置,像SPPnet和Fast R-CNN这些网络已经减少了检测网络的运行时间,这时计算区域建议就成了瓶颈问题。本

2016-09-27 17:34:42 3095

翻译 Fast Rcnn 论文总结

论文:《Fast R-CNN》  此论文的总结也是和以前的sppnet以及rcnn论文总结一样参考了前人的博客来总结的。1. 概述 论文是由R-CNN大牛作者rbg即R-Cnn和sppnet在2015提出发表于ICCV2015,Fast Rcnn是加强版的SPPnet,Fast Rcnn相比于Rcnn在时间和性能上都做了改进。它避免对一幅图片的多个proposal分别计算CNN特征(大量的重复计算

2016-09-27 17:21:39 1691

原创 SPPnet论文总结

小菜看了SPPNet这篇论文之后,也是参考了前人的博客,结合自己的一些观点写了这篇论文总结。 这里参考的连接如下: [http://blog.csdn.net/u013078356/article/details/50865183] 论文: 《Spatial Pyramid Pooling in Deep Convolutional Netwo

2016-09-27 16:36:59 13495 7

原创 Rcnn论文总结

Rcnn论文总结论文:《Rich featurehierarchies for accurate object detection and semantic segmentation》这里我也是借鉴了前辈的博客:http://blog.csdn.net/hjimce/article/details/50187029,在此基础上我详细介绍了selective research原理。概

2016-09-02 12:43:58 6236

原创 BN(Batch Normalization)总结--Accelerating Deep Network Training by Reducing Internal Covariate Shift

BN(batch normalization)总结论文:《Batch Normalization: Accelerating Deep Network Training by ReducingInternal Covariate Shift》小菜这里也是看了许多前辈的博客总结的,这里也感谢前辈的无私。。。。。1.      概述核心:Ø  加入特殊归一化层BN层此论文是Go

2016-08-31 09:48:32 3268

原创 Going Deeper with Convolutions--Googlenet论文总结

Googlenet总结论文:>注:还需要深入研究Inception的结构,此处只是简单的介绍了一开始的Inception,后来Google对Inception的结构又升级了。1.     概述核心:Ø  引入Inception结构Ø  应用averagepooling代替FCØ  加入辅助softmax防止梯度消失本文是Google公司的Christian Sz

2016-08-31 09:43:49 2138 1

原创 Very Deep Convolutional Networks For Large-Scale Image Recognition论文翻译总结

VGGnet论文:《Very Deep Convolutional Networks For Large-Scale Image Recognition》1.     概述本文是牛津大学 visual geometry group(VGG)Karen Simonyan 和AndrewZisserman 于2014年撰写的论文,主要探讨了网络深度对于网络的重要性,建立了16-19

2016-08-31 09:40:28 2425

原创 Visualizing and Understanding Convolutional Networks翻译总结

Zfnet论文:《Visualizing and Understanding Convolutional Networks》1.     概述这篇论文主要的贡献是将卷及神经网络的隐藏层的特征进行可视化,后面通过可视化的展示来分析如何构建更好的网络结构。最后还描述了该网络中的每层对整体分类性能的贡献,还对了该模型在其他数据集上取得的成绩:仅仅是对softmax分类器重新训练,该模型击败了

2016-08-31 09:35:52 8547 2

原创 ImageNet Classification with Deep Convolutional Neural Networks翻译总结

Alexnet总结笔记论文:《ImageNet Classification with Deep Convolutional Neural Networks》1 网络结构网络使用了逻辑回归目标函数求得参数最优化,此网络结构如图1所示,一共有8层网络:5层卷积层、3层全连接层,还有最前面的是图像输入层。1)  卷积层一共有5层卷积层,由结构图可知,此结构用到了2个GPU并行计算部

2016-08-31 09:31:13 1302

原创 Adaboost 训练详解

Adaboost 总结1、     概述Adaboost简单来说就是将多个分类器整合成一个分类器,是boosting的扩展和延续。是一种迭代算法,在每一轮加入一个新的弱分类器,直到达到某个预定的足够小的错误率,最后得到一个由多个弱分类器组成的强分类器。每一个样本在训练时都被赋予一个权值,表明它被某个分类器选入训练集的概率。如果某个样本点已经被正确分类,那么在构造下一个训练集时,它的相应的权

2016-08-12 15:16:31 1557

原创 Caffe学习笔记10:图像数据生成caffe需要的(laveldb和lmdb)数据文件

在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致。而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件?在caffe中,作者为我们提供了这样一个文件:convert_imageset.cpp,存

2016-08-12 14:56:27 2567 4

转载 Caffe学习笔记9:caffe命令行解析

caffe的运行提供三种接口:c++接口(命令行)、python接口和matlab接口。一般前面两个用的比较多。小菜这里也是看了别人的博客,下面的内容也是来自别人的总结。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这

2016-08-12 14:54:45 1105

原创 Caffe学习笔记8:solver参数配置

solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为:Build/x64/Release/caffe.exetrain --solver=examples/myfile/slover.prototxt根据你们自己的路径不一样,上面的文件的路径也不一样。在Deep Learning中,往往lossfunc

2016-08-12 14:52:29 1502

转载 Caffe学习笔记7:其他常用层和参数

小菜在这里讲解一些其它的常用层,包括:softmax_loss、Inner Product、accuracy、reshape、dropout层及其它们的参数配置。1、softmax-loss小菜没有仔细去研究softmax-loss和softmax的区别,softmax-loss层和softmax层计算大致是相同的。softmax是一个分类器,计算的是类别的概率(Likelihood),是

2016-08-12 14:48:58 627

数字图像处理

本书是dip中文版,英文版不好看,所以希望能够帮到你们,也希望你们能积极下载

2014-10-25

支持多标签的convert_imageset.cpp代码

将此convert_imageset.cpp替换caffe中的原来的convert_imageset.cpp重新编译caffe,就能是caffe支持多标签输出

2017-03-10

多标签lmdb数据制作脚本文件

多标签lmdb数据制作脚本文件

2016-12-12

caffe网络结构中文详细

caffe网络结构中文详细讲解

2016-08-31

积分通道行人检测

已经调通的MATLAB版的ICF+adaboost的行人检测代码

2015-08-14

windows下运行DPM的代码

经过努力终于能在windows下运行DPM的MATLAB代码

2015-04-22

MATLAB源码翻译成c++

发表于 2015-10-07 最后回复 2018-06-21

怎么利用c++和MATLAB混编时的c++代码

发表于 2015-10-17 最后回复 2016-10-31

空空如也
提示
确定要删除当前文章?
取消 删除