- 博客(50)
- 资源 (6)
- 收藏
- 关注
转载 Caffe学习笔记6:激活层(Activiation Layers)和参数
在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。 输入:n*c*h*w 输出:n*c*h*w 常用的激活函数有sigmoid、tanh、relu等,下面分别介绍: 1、Sigmoid 对每个输入数据,利用sigm
2016-08-12 14:45:09
938
原创 Caffe学习笔记5:视觉及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看小菜的caffe学习笔记4文章:数据层及参数。本学习笔记只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling、LocalResponse Normalization (LRN)、im2col等层。 1、Convolution层: 就是卷积层
2016-08-12 11:43:56
987
原创 Caffe学习笔记4:caffe中数据层及参数学习
小菜在成功搭建了caffe和测试了caffe的第一个例子后,觉得应该需要大致了解一下caffe的框架里都有什么,需要去学习基本的知识。跟着小菜一起吧,let’s go……要运行caffe,需要先创建一个模型(model),如比较常用的Lenet、Alexnet、VGG、Googlenet等。而一个模型由多个屋(layer)构成,每一屋又由许多参数组成。所有的参数都定义在caffe.prototxt这
2016-08-12 11:38:51
1222
原创 Caffe学习笔记3:caffe跑第一个mnist的例子
小菜这里是简单的介绍一下整个过程的操作执行的指令,不详细介绍里面的原理,如果你搭建完caffe,赶紧追随小菜一起试试caffe的第一个例子。 Ø 打开caffe.sln,生成convert_mnist_data,这样就在Build/x64/Release下生成了convert_mnist_data.exe。 Ø 在cygwin中执行caffe-master/caffe-master/dat
2016-08-12 11:32:49
3896
原创 Caffe学习笔记1:初识caffe篇(caffe介绍)
小菜一开始学习caffe的时候,是去网上找了一些有关caffe的介绍的资料和一些博客,还看了caffe的创建者贾扬清对caffe的一个简单介绍,如果英语比较好的人,你们可以去贾扬清的主页上去看看caffe的介绍。下面介绍的内容也是小菜查找了许多博客选了一篇比较好的博客的内容。其他的可以看看后面的连接。这里就不一一介绍了! Caffe的全称是:Convolutional architecture
2016-08-12 11:20:06
9052
原创 Windows下caffe用fine-tuning训练好的caffemodel来进行图像分类
小菜准备了几张验证的图片存放路径为caffe根目录下的 examples/images/, 如果我们想用一个微调训练好的caffemodel来对这张图片进行分类,那该怎么办呢?下面小菜来详细介绍一下这一任务的步骤。一般可以同两种方式进行测试,分别是基于c++接口和python接口。不管是用c++来进行分类,还是用python接口来分类,我们都应该准备这样三个文件: 1、 caffemodel文
2016-07-29 09:46:29
2391
转载 caffe(1)参数和数据层的理解
博文主要是来自前辈denny402的博客园的博客,看了他的博客也使我收益匪浅。 要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer) 构成,每一屋又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学 会配置文件(prototxt)的编写。
2016-07-25 10:41:46
1208
转载 C++常用库的函数详解
本文中提到的函数库有: 1. 标准C++库字符串类std::string的用法 begin 得到指向字符串开头的Iterator end 得到指向字符串结尾的Iterator rbegin 得到指向反向字符串开头的Iterator rend 得到指向反向字符串结尾的Iterator size 得到字符串的
2016-04-21 11:16:41
2091
1
转载 最大流和最小割
出处:http://blog.csdn.net/euler1983/article/details/5959622 算法优化algorithmgraphtree任务 这篇文章说的是Yuri Boykov and Vladimir Kolmogorov在2004年提出的一种基于增广路径的求解最大流最小割的算法,号称大部分情况下会很快。而且在算完之后,会自动完成最小割集的构造。 作者
2016-04-14 15:06:50
870
原创 Adaboost训练过程的详解
Adaboost 总结 1、 概述 Adaboost简单来说就是将多个分类器整合成一个分类器,是boosting的扩展和延续。是一种迭代算法,在每一轮加入一个新的弱分类器,直到达到某个预定的足够小的错误率,最后得到一个由多个弱分类器组成的强分类器。每一个样本在训练时都被赋予一个权值,表明它被某个分类器选入训练集的概率。如果某个样本点已经被正确分类,那么在构造下一个训练集时,它的相应的权
2015-10-13 22:04:56
2880
支持多标签的convert_imageset.cpp代码
2017-03-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅