windows支持中文内容读取 wchar_t linex[1000]; FILE* f1; f1 = _wfopen(L"conf/AUTO_result.txt", L"rt+,ccs=UTF-8"); locale loc(""); wcout.imbue(loc); while (!feof(f1)) { fgetws(linex, ...
解决Centos7 下中文乱码 打开配置文件sudo vim /etc/locale.conf1设置语言LANG=en_US.UTF-8 # 英文 UTF-8#或者LANG=zh_CN.UTF-8 # 中文 UTF-8123456使配置生效source /etc/locale.conf# 或者 重新登陆终端连接123 ...
ubuntu下如何安装多版本的python之python3.6.1安装numpy,scipy等依赖包 最近需要搭建Pytorch框架,复现某个工程,需要在python3.6版本下实现。由于ubuntu14.04系统默认安装的是python2.7.6和python3.4版本,在这个地方被坑了无数次,主要是安装了python后需要安装python3.6的依赖包,用老方法装依赖包总是装到系统默认的python2.7.6下面。折腾了一晚上,坑死人了,最后还重装了一次系统。真是应了那句话不踩坑不了解事实真相
NASNet学习笔记 NASNet总结论文:《Learning Transferable Architectures for Scalable Image Recognition》 注 先啥都不说,看看论文的实验结果,图1和图2是NASNet与其他主流的网络在ImageNet上测试的结果的对比,图3是NASNet迁移到目标检测任务上的检测结果,从这图瞬间感觉论文的厉害之处了,值得阅读好几篇。
Neural Architecture Search with Reinforcement Learning论文总结 Neural Architecture Search with Reinforcement Learning论文总结论文:《Neural Architecture Search with Reinforcement Learning》 网站链接(开源代码):https://github.com/tensorflow/models1. 概述 此论文出自google Brain并发表与
SENet学习笔记 SENet总结论文:《Squeeze-and-Excitation Networks》 论文链接:https://arxiv.org/abs/1709.01507 代码地址:https://github.com/hujie-frank/SENet1. 概述 此论文是由Momenta公司所作并发于2017CVPR,论文中的SENet赢得了ImageNet最后一届(ImageNe
Densenet学习笔记 Densenet总结 论文:《Densely Connected Convolutional Networks》 论文链接:https://arxiv.org/pdf/1608.06993.pdf 代码的github链接:https://github.com/liuzhuang13/DenseNet Caffe版本的GitHub链接:https://github.com/shicai/
YOLO论文学习笔记 之前一直在用yolo做目标检测,速度上的效果确实比rcnn、fast_rcnn以及faster_rcnn快得多了。其主要的训练机制跟它们也不一样,把检测看作是一种回归的问题,其主要的特点就是: 1 整个图片进行训练,检测的时候也是整个图片进行检测直接获得bounding boxes和class probabilities。 2 损失函数的设计。3 针对lager object和small o
Yolo的搭建和在Windows下封装以及工程应用 概述 最近一直在研究基于深度学习的目标检测这一块,之前用过faster_rcnn和R-FCN,相对来说检测的准确率应该是可以的,但是实际的检测速度还是很不理想的,考虑实际工程的需求,所以后来想着用yolo来做目标检测,经过测试发现yolo确实是在检测速度上有很大的提高,但是调试了源码发现只是yolo的底层检测函数是满足实时的要求,而它基于视频的目标检测的demo我测试了一下大概是16FPS左右
Windows下面用vs2013直接调用caffe的c++接口 1 概述 由于需求最经需要做火焰检测,一开始是想着用传统的机器学习算法去做,后来发现目前的火焰检测都是基于颜色来做的,在实际场景中经常会因为路灯和太阳等外部的影响导致很严重的误报,后来定了用深度学习进行火焰检测都图像进行分类图片是否发生火灾,训练数据集是张**在网上爬虫爬了几千张数据,主要是基于caffe框架训练的模型,要是想着在工程中应用,就必须想着用vs2013直接调用caffe的c++接
Ubuntu+ cuda7.5+cudnn4.0+opencv3.0+python caffe安装配置 Ubuntu16.04下面安装caffe的教程: http://blog.csdn.net/zx10212029/article/details/51778540 下面步骤是基于Ubuntu14.04安装的过程: 安装Ubuntu14.04 自己分区,分了四个区(/、/home、/boot、swap) 安装依赖的库:sudo apt-get install freeglut3-dev
win10中vs2013和cuda7.5的一些问题 最近在win10上安装了cuda7.5,确实安装成功了。但是后面用基于vs2013使用gpu工程老是提示错误: 错误 1 error MSB4062: 未能从程序集 C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\V120\BuildCustomizations\Nvda.Build.CudaTasks.v7.5.dll 加载任务“N C++ 获取文件下的所有文件的名字 #include<iostream>#include<opencv2\opencv.hpp>#include<string>#include<vector>using namespace std;using namespace cv;void getFiles(string path, vector<string>& files){ //文件句柄 long hFi Linux下基于eclipse的C++工程调用caffe的c++接口 概述 小白之前一直没有接触过Linux下面的c++编程和代码的调试,以前都是基于Windows开发的c++,用的也一直都是vs的编辑环境。现在由于实际的需求,需要在Linux下面建立c++工程去调用caffe的c++接口,从而调用基于caffe训练好的分类模型。由于没有接触过Linux下面的c++编程和调试,小白是费了老鼻子劲了,都被caffe依赖的头文件和库整无语了。下面小白详细介绍怎么脱离ca R-CFN学习笔记 论文:《R-FCN: Object Detection via Region-based Fully Convolutional Networks》概述 此论文是微软亚洲研究院的代季峰在2016年提出来的一篇目标检测的很牛的论文,相比较以前的rcnn、spp、fast_rcnn以及faster_rcnn在检测速度上有了很大的提升,我自己也在caffe框架里面用了R-FCN,网络结构主要是用了re Network in Network学习笔记 论文:《Network in Network》 概述: 此论文是2014年的一篇比较厉害的paper,该论文改进了传统的cnn网络使得网络模型参数很少,也为后续的Googlenet和resnet以及目标检测网络中提出的全卷积共享提供了一个很好的开端,小菜也是在学习主流的深层网络模型的论文时发现许多论文中都有提到NIN这篇论文,所以专门挑了时间看了这篇论文,觉得这篇论文的确不错,论文中的网络整 多标签lmdb数据制作脚本文件 caffe多任务学习之多标签分类 最近在参加一个行人精细化识别的竞赛,项目里涉及了许多类别的分类,原本打算一个大的类别训练一个分类模型,但是这样会比较麻烦,对于同一图片的分类会重复计算分类网络中的卷积层,浪费计算时间和效率。后来发现现在深度学习中的多任务学习可以实现多标签分类,所有的类别只需要训练一个分类模型就行,其不同属性的类别之间是共享卷积层的。我所有的项目开发都是基于caffe框架的,默认的,Caffe中的Data层只支持单维 caffe fine-tune策略 caffe fine-tune策略 现在随着深度学习技术的迅速发展,深度学习技术在图像和语音方向的应用已经很成熟了。目前工程上应用深度学习一般源于数据的限制都是在ImageNet pre-trained model的基础上进行微调—fine-tune。由于ImageNet数以百万计带标签的训练集数据,使得如CaffeNet之类的预训练的模型具有非常强大的泛化能力,这些预训练的模型的中间层包含非
C++ 获取文件下的所有文件的名字 #include<iostream>#include<opencv2\opencv.hpp>#include<string>#include<vector>using namespace std;using namespace cv;void getFiles(string path, vector<string>& files){ //文件句柄 long hFi
Linux下基于eclipse的C++工程调用caffe的c++接口 概述 小白之前一直没有接触过Linux下面的c++编程和代码的调试,以前都是基于Windows开发的c++,用的也一直都是vs的编辑环境。现在由于实际的需求,需要在Linux下面建立c++工程去调用caffe的c++接口,从而调用基于caffe训练好的分类模型。由于没有接触过Linux下面的c++编程和调试,小白是费了老鼻子劲了,都被caffe依赖的头文件和库整无语了。下面小白详细介绍怎么脱离ca
R-CFN学习笔记 论文:《R-FCN: Object Detection via Region-based Fully Convolutional Networks》概述 此论文是微软亚洲研究院的代季峰在2016年提出来的一篇目标检测的很牛的论文,相比较以前的rcnn、spp、fast_rcnn以及faster_rcnn在检测速度上有了很大的提升,我自己也在caffe框架里面用了R-FCN,网络结构主要是用了re
Network in Network学习笔记 论文:《Network in Network》 概述: 此论文是2014年的一篇比较厉害的paper,该论文改进了传统的cnn网络使得网络模型参数很少,也为后续的Googlenet和resnet以及目标检测网络中提出的全卷积共享提供了一个很好的开端,小菜也是在学习主流的深层网络模型的论文时发现许多论文中都有提到NIN这篇论文,所以专门挑了时间看了这篇论文,觉得这篇论文的确不错,论文中的网络整
caffe多任务学习之多标签分类 最近在参加一个行人精细化识别的竞赛,项目里涉及了许多类别的分类,原本打算一个大的类别训练一个分类模型,但是这样会比较麻烦,对于同一图片的分类会重复计算分类网络中的卷积层,浪费计算时间和效率。后来发现现在深度学习中的多任务学习可以实现多标签分类,所有的类别只需要训练一个分类模型就行,其不同属性的类别之间是共享卷积层的。我所有的项目开发都是基于caffe框架的,默认的,Caffe中的Data层只支持单维
caffe fine-tune策略 caffe fine-tune策略 现在随着深度学习技术的迅速发展,深度学习技术在图像和语音方向的应用已经很成熟了。目前工程上应用深度学习一般源于数据的限制都是在ImageNet pre-trained model的基础上进行微调—fine-tune。由于ImageNet数以百万计带标签的训练集数据,使得如CaffeNet之类的预训练的模型具有非常强大的泛化能力,这些预训练的模型的中间层包含非