对于任意
△
A
B
C
,
S
△
A
B
C
=
B
C
⋅
A
D
⋅
1
2
A
D
=
A
B
sin
b
=
A
C
sin
c
因此
S
△
A
B
C
=
B
C
⋅
A
B
⋅
sin
b
⋅
1
2
=
B
C
⋅
A
C
⋅
sin
c
⋅
1
2
同理可得
S
△
A
B
C
=
A
B
⋅
A
C
⋅
sin
a
⋅
1
2
由此可见,
S
△
A
B
C
=
两邻边的积
⋅
夹角正弦值
⋅
1
2
对于任意\triangle ABC,S_{\triangle ABC}=BC·AD·\frac{1}{2} \\ AD=AB\sin b=AC\sin c \\ 因此S_{\triangle ABC}=BC·AB·\sin b·\frac{1}{2}=BC·AC·\sin c·\frac{1}{2} \\ 同理可得S_{\triangle ABC}=AB·AC·\sin a·\frac{1}{2} \\ 由此可见,S_{\triangle ABC}=两邻边的积·夹角正弦值·\frac{1}{2}
对于任意△ABC,S△ABC=BC⋅AD⋅21AD=ABsinb=ACsinc因此S△ABC=BC⋅AB⋅sinb⋅21=BC⋅AC⋅sinc⋅21同理可得S△ABC=AB⋅AC⋅sina⋅21由此可见,S△ABC=两邻边的积⋅夹角正弦值⋅21
如何用三角函数公式算三角形面积
于 2023-06-24 13:38:04 首次发布