一些概念

红框:CPU批次位置

开核也叫超核,知道超频吗?超频是将CPU工作在比原始频率更高的频率,而开核指的是将双核或三核处理器变成四核处理器。可以开核的处理器仅仅只有被屏蔽或残次的处理器,AMD普遍由上向下铺货。开核几率较大的CPU目前有Phenom X3 8450;Athlon X2 7750,7850;Phenom2 X3 710,720;Phenom2 X2 545,550;Athlon X3 425,435;当然他们都是由Phenom2 X4 955阉割而来的。除此以外如Phenom2 X4 800系列,可以将三级缓存由4MB开成6MB。

  具备此下条件开核几率相对较大:

  1.必须采用南桥是SB710或SB750的AMD 7系列主板。并且主板的BIOS中要有ACC选项。

  2.必须采用特定编号的CPU,如8450必须是第一批上市的那个批次。710,720可以是0904批次,而550以0913,0919,0922批次开核成功得多。经过测试X3435批次0947开核成功

Tick-Tock(工艺年-构架年)是英特尔的芯片技术发展的战略模式。

Tick指每隔两年的奇数年推出更小、更先进制程的处理器;Tock指每隔两年的偶数年推出新架构的处理器。

Tick-Tock就是时钟的“嘀嗒”的意思,一个嘀嗒代表着一秒,而在Intel的处理器发展战略上,每一个嘀嗒代表着2年一次的工艺制程进步。每个Tick-Tock中的“Tick”,代表着工艺的提升、晶体管变小,并在此基础上增强原有的微架构,而Tick-Tock中的“Tock”,则在维持相同工艺的前提下,进行微架构的革新,这样在制程工艺和核心架构的两条提升道路上,总是交替进行,一方面避免了同时革新可能带来的失败风险,同时持续的发展也可以降低研发的周期,并可以对市场造成持续的刺激,并最终提升产品的竞争力。

Intel 8086

  
   intel_8086

intel_8086

1978年6月INTEL推出了8086微处理器, 主频4.77MHz,采用16位 寄存器、16位 数据总线和29000个3微米技术的晶体管,标志着第三代微处理器问世。售价360美元。 不过当时由于360美元过于昂贵,大部分人都没有足够的钱购买使用此芯片的电脑,于是 Intel 在1年之后,推出了8086的简化版8088,是一款4.77MHz准16位微处理器。它在内部以16位运行,但支持8位数据总线,采用现有的8位设备控制芯片,包含29000个3微米技术的晶体管,可访问1MB 内存地址,速度为0.33MIPS。IBM公司1981年生产的第一台电脑就是使用的这种芯片。这也标志着x86架构和IBM PC 兼容电脑的产生。   发布的时候,8086的 时钟频率有4.77,8和10MHz 三个版本,包括了具有300个操作的 指令集。其中8MHz 版本包含了大约28,000个 晶体管,具备0.8 MIPs 的能力。  8085是8位的微处理器

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 卷积神经网络(Convolutional Neural Network,CNN)是一种广泛应用于计算机视觉领域的深度学习模型。以下是一些卷积神经网络中基本的概念: 1. 卷积层(Convolutional Layer):卷积层是CNN的核心层,它通过卷积运算提取图像的特征。卷积层包括卷积核和偏置项,卷积核通过卷积运算提取图像的局部特征。 2. 池化层(Pooling Layer):池化层用于对卷积层输出的特征图进行下采样,减少参数数量,防止过拟合。 3. 全连接层(Fully Connected Layer):全连接层将卷积层和池化层输出的特征图转换成一维向量,然后通过全连接层进行分类或回归。 4. 激活函数(Activation Function):激活函数用于增加CNN的非线性特性。常用的激活函数包括ReLU、Sigmoid和Tanh等。 5. 权重和偏置项(Weights and Bias):CNN中的每个卷积核和全连接层都有自己的权重和偏置项,这些参数是通过反向传播算法进行训练得到的。 6. 卷积步长(Stride):卷积步长是卷积核在进行卷积运算时在输入特征图上移动的步长。 7. 填充(Padding):填充是在输入特征图的周围添加一些像素,用于保持输入和输出特征图的大小一致,防止信息丢失。常用的填充方式包括“Valid Padding”和“Same Padding”。 8. 卷积核数量(Filters):卷积核数量是指在特征图上进行卷积运算时使用的卷积核的数量,每个卷积核提取一种特征。 在卷积神经网络中,这些基本概念相互配合,构成了一个复杂的深度学习模型,用于解决计算机视觉领域的分类、检测、分割等问题。 ### 回答2: 卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,常用于图像识别和计算机视觉任务。在理解CNN的基本概念前,我们需要了解以下几个关键概念: 1. 卷积层(Convolutional Layer):卷积层是CNN的核心组成部分,通过应用一系列滤波器(卷积核)对输入数据进行卷积操作,以提取输入数据的特征。每个滤波器实际上是一个小型的矩阵,通过在输入数据上进行平移运算,将每个局部区域与滤波器进行逐元素相乘,再将结果求和得到输出特征图。 2. 池化层(Pooling Layer):池化层通常用于下采样操作,以减少特征图的维度,并保留最重要的特征。常见的池化方式是最大池化(Max Pooling),即在特定的窗口中选取最大值作为池化结果。 3. 激活函数(Activation Function):激活函数非线性地引入非线性特征,以提高CNN的表达能力。常见的激活函数有ReLU(修正线性单元)、Sigmoid和Tanh等。 4. 卷积核(Kernel):卷积核是CNN中的重要参数,由多个权重构成。不同的卷积核可以提取不同的特征,通过改变卷积核的大小和数量,可以改变CNN提取的特征。 5. 步幅(Stride):步幅定义了卷积核在输入数据上的移动距离。较大的步幅可以减少输出特征图的尺寸,但可能会丢失一些信息。 6. 填充(Padding):填充是在输入数据周围添加额外像素,以控制输出特征图的尺寸。常用的填充方式有“Valid”(无填充)和“Same”(保持输入输出尺寸相同)。 通过以上基本概念,卷积神经网络能够有效地提取图像特征,并通过全连接层将这些特征映射到不同类别的分类结果。CNN已广泛应用于图像分类、目标检测、人脸识别等领域,取得了很多令人瞩目的成果。 ### 回答3: 卷积神经网络(Convolutional Neural Network,CNN)是一种用于处理具有格状结构的数据的人工神经网络。以下是一些卷积神经网络中常见的基本概念: 1. 卷积层:卷积层是CNN的核心组成部分,通过对输入数据进行卷积操作来提取特征。卷积操作是通过将一个滤波器(也称为卷积核)与输入数据进行逐元素相乘,再求和的方式实现的。 2. 滤波器(卷积核):滤波器是卷积层中的参数,用于检测图像中的特定特征,如边缘、纹理等。滤波器的大小和形状可以根据需求来设计。 3. 激活函数:激活函数在卷积神经网络中用于引入非线性变换,增加网络的表达能力。常见的激活函数有ReLU、Sigmoid和TanH等,它们通过将输入映射到某个特定范围内的数值来实现非线性变换。 4. 池化层:池化层用于减小特征图的空间尺寸,同时保留主要的特征信息。常用的池化方式有最大池化和平均池化,它们分别选取池化窗口内的最大值或平均值作为输出。 5. 全连接层:全连接层是卷积神经网络中的最后一层,它将前面的卷积和池化层的输出连接在一起,并应用于分类或回归问题。全连接层中的每个神经元都与上一层的所有神经元相连。 6. 批归一化层:批归一化层用于加速模型的训练速度和稳定性,通过对每个批次的数据进行标准化来规范化网络的输入。它可以使数据在训练过程中的分布更稳定,加快训练速度并提高模型的泛化能力。 7. 损失函数:损失函数用于衡量模型输出与真实值之间的差异程度,是卷积神经网络中的优化目标。常见的损失函数有均方差损失和交叉熵损失等,用于回归和分类问题。 卷积神经网络是目前在图像识别、目标检测等任务中取得显著结果的一种深度学习模型,上述概念是理解和应用CNN的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值