使用Python操作excel单元格——删除行和列

一、前言

通过使用Python的openpyxl库,来操作excel单元格,删除行和列。主要用到delete_rows(删除行)和delete_cols(删除列)两个函数。
把学习的过程分享给大家。大佬勿喷!

二、程序展示

1、表格准备

提前先创建一张表格用于测试,命名为“删除行列”。
表格准备

2、删除行程序

import openpyxl
wb = openpyxl.load_workbook('F:\python_study\表格\删除行列.xlsx')
sheet = wb.active
sheet.delete_rows(3,4)
wb.save('F:\python_study\表格\删除行列.xlsx')

程序是从第3行开始,删除4行,执行后的结果为:
删除行
如果delete_rows只输入一个参数,如delete_rows(3),这个时候默认删除第3行。

3、删除列程序

删除前的表格:
表格2

import openpyxl
wb = openpyxl.load_workbook('F:\python_study\表格\删除行列.xlsx')
sheet = wb.active
sheet.delete_cols(3,2)
wb.save('F:\python_study\表格\删除行列.xlsx')

程序是从第3列开始,删除2列,执行后的结果为:
删除列
如果delete_cols只输入一个参数,如delete_cols(3),这个时候默认删除第3列。

要用PythonExcel表格数据预处理并将其导入RNN,您可以使用以下步骤: 1. 安装必要的Python库 您需要安装一些Python库来处理Excel数据构建RNN模型,例如pandas、openpyxl、numpy、scikit-learntensorflow等库。您可以使用以下命令来安装这些库: ``` pip install pandas openpyxl numpy scikit-learn tensorflow ``` 2. 读取Excel数据 使用pandas库可以轻松地读取Excel表格数据。例如,您可以使用以下代码来读取名为“data.xlsx”的Excel文件中的数据: ```python import pandas as pd df = pd.read_excel("data.xlsx") ``` 3. 数据预处理 对于RNN模型,您需要将数据转换为时间序数据。这意味着您需要将数据分成输入序输出序。您可以使用以下代码来执操作: ```python import numpy as np # 将数据转换为NumPy数组 data = np.array(df) # 将数据划分为输入序输出序 input_seq = data[:, :-1] output_seq = data[:, -1] ``` 4. 标准化数据 在训练神经网络之前,您需要将数据标准化为均值为0,标准差为1的形式。这可以通过使用scikit-learn库中的StandardScaler类来完成。以下是如何使用它: ```python from sklearn.preprocessing import StandardScaler # 创建标准化器对象 scaler = StandardScaler() # 使用标准化器拟合转换输入序 input_seq = scaler.fit_transform(input_seq) # 使用标准化器拟合转换输出序 output_seq = scaler.fit_transform(output_seq.reshape(-1, 1)) ``` 5. 准备数据 您需要将输入序转换为适合于RNN的形状。这可以通过将输入序重新塑造为三维张量来完成,其中第一维表示样本数量,第二维表示时间步数,第三维表示特征数量。以下是如何使用它: ```python # 将输入序重新塑造为三维张量 input_seq = input_seq.reshape(input_seq.shape[0], 1, input_seq.shape[1]) ``` 6. 构建RNN模型 在tensorflow中,您可以使用keras API来构建RNN模型。以下是如何使用LSTM层构建一个简单的RNN模型: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense # 定义RNN模型 model = Sequential() model.add(LSTM(64, input_shape=(1, input_seq.shape[2]))) model.add(Dense(1)) # 编译模型 model.compile(loss='mse', optimizer='adam') ``` 7. 训练模型 您可以使用model.fit()方法来训练模型。以下是如何使用它: ```python # 训练模型 model.fit(input_seq, output_seq, epochs=100, batch_size=64) ``` 8. 导出模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xll_007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值