RDD的依赖关系,以及造成的stage的划分

一:RDD的依赖关系

1.在代码中观察

    val data = Array(1, 2, 3, 4, 5)
  val distData = sc.parallelize(data)
  val resultRDD = distData.flatMap(v => (1 to v)).map(v => (v%2,1)).reduceByKey(_+_)
  resultRDD.toDebugString ## 查看RDD的依赖情况

在这里插入图片描述

2.解释

  + —处表示,这是两个不同的stage

  同时可以知道shuffledRDD依赖于MapPartitionRDD,MapPartitionRDD依赖于MapPartitionRDD,MapPartitionRDD依赖于ParalleCollectionRDD

 [2]表示有两个分区
在这里插入图片描述

3.RDD依赖

  lineage: 生命线
  依赖于RDD之间的依赖,后续的RDD数据是从之前的RDD中获取
  由于存在RDD的依赖,当一个后续的RDD执行失败的情况下(某个Task执行失败,eg:数据丢失),可以从父RDD中重新执行
  RDD依赖父RDD,依赖的父RDD可以有多个;

    特例:第一个RDD是没有父RDD的
  RDD的内部是由多个Partiiton构成的,所以RDD的依赖实质上就是RDD中Partition的依赖关系

4.依赖的情况

  当前RDD中的每个分区的数据到下一个RDD都对应一个分区
   即:一个分区的数据输出到下一个RDD的时候还是在同一个分区,也就是一对一
  当前RDD中的多个分区的数据到下一个RDD的时候输出到同一个分区,当前RDD的中一个分区的数据到下一个RDD的时候输出到多个分区,也就是多对多

5.依赖分类

窄依赖:
  子RDD中的每个分区的数据都来自于常数个父RDD的分区,而且父RDD每个分区的数据到子RDD的时候一定在一个分区中
  不存在shuffle过程,所有操作在一起进行
宽依赖:
  子RDD中的每个分区的数据都依赖所有父RDD的所有的分区数据,而且父RDD的每个分区的数据到子RDD的时候不一定在一个分区中
  存在shuffle过程,需要等待上一个RDD的所有Task执行完成
在这里插入图片描述
在这里插入图片描述
注意点:
  join有时候是宽依赖,有时候是窄依赖,这个要看分区数量会不会改变。

6.算子与依赖之间的关系

  原本以为Transformation的算子是窄依赖,Action算子是宽依赖。
  现在理解更深了一下,发现他们是两个概念,不要混淆。

二:stage的划分

1.Spark Application Job的Stage划分规则

  RDD在调用transformation类型的函数时候形成DAG执行图(RDD的依赖)
  RDD在调用action类型函数的时候会触发job的执行
  在Driver中使用DAGScheduler对DAG图进行Stage的划分
    从DAG图的最后一步(结果输出的那一步)往前推,如果发现API是宽依赖(ShuffledRDD), 就结束推断,将此时构成的DAG图称为一个Stage,然后继续往前推断,直到第一个RDD
    ====> Stage与Stage之间的分割是宽依赖

三:两种RDD依赖的复习

1.说明

  主要是添加一个知识点。

  什么情况下父RDD需要执行。

2.不是不执行

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值