Unresolved attribute reference 'objects' for class

本文介绍了一个在使用PyCharm进行Django项目开发时遇到的常见警告:“Unresolved attributereference 'objects'”。虽然这通常是由IDE本身引起的,并不影响代码的实际运行,但了解其原因有助于消除开发过程中的疑惑。

在使用python 的IEDpycharm写django项目时,使用以下语法:

    result = User.objects.filter(user=user, pwd=pwd)

会提示:Unresolved attribute reference 'objects' for class

一般为编译器的问题,不会影响代码的顺利执行(可以忽略)

<think>我们遇到了一个错误:`Unresolved attribute reference 'long' for class 'bool'`。这个错误通常发生在代码中使用了`long`属性,但是该属性在对象上不存在。在PyTorch中,我们经常使用`.long()`将张量转换为长整型,但是这里可能是误用了。 观察之前的代码,在`forward`函数中,我们使用了: mask = target.gt(-1) # 这返回一个布尔张量 然后,我们可能会在CRF层中使用这个mask。但是,某些CRF实现(比如`pytorch_crf`)要求mask是`torch.long`类型(即整数类型)或者`torch.uint8`(或`torch.bool`,取决于版本)。然而,`target.gt(-1)`返回的是布尔张量(`torch.bool`)。 在较新的PyTorch版本中,布尔张量可以直接作为mask使用,但某些旧版本的CRF实现可能要求mask是`torch.uint8`。另外,如果CRF层内部实现要求的是长整型,那么就会报错。 但是,错误信息提到的是`long`属性,所以可能是我们在代码中使用了`mask.long()`,但`mask`是布尔类型,而布尔类型并没有`long`属性?实际上,布尔张量有`long()`方法,所以这个错误可能是其他原因。 另一种可能性是:在CRF层的实现中,可能对mask进行了`.long()`的调用,但是CRF层的实现可能是针对旧版PyTorch的?或者我们在其他地方使用了`.long`属性(注意:方法调用是`.long()`,而属性是`.long`,这不一样)。 因此,我们需要检查: 1. 我们是否在代码中直接使用了`.long`(而不是`.long()`)? 2. CRF层的实现是否要求特定的数据类型? 在之前提供的代码中,并没有直接出现`.long`,所以可能是CRF层内部的问题。但是,由于我们没有给出CRF层的实现,这里我们假设使用的是`pytorch_crf`库。 在`pytorch_crf`的文档中,要求mask是`torch.uint8`类型。而我们的mask是`torch.bool`类型,这可能在旧版本中不兼容。在新版本的`pytorch_crf`中,已经支持`torch.bool`。 解决方案: 1. 将布尔掩码转换为`torch.long`(实际上,转换为整数类型)或者`torch.uint8`(如果CRF层要求): mask = target.gt(-1).long() # 或者 .byte() 或 .to(torch.uint8) 2. 或者保持为布尔类型,但确保CRF层支持布尔掩码(检查CRF版本)。 然而,错误信息是“Unresolved attribute reference 'long' for class 'bool'”,这通常是在IDE(如PyCharm)中出现的静态检查错误,而不是运行时错误。这意味着在代码中可能有这样的写法: bool_value.long # 注意这里没有括号,所以是属性而不是方法 所以,请检查代码中是否有将`.long`作为属性使用的情况(即缺少括号)。例如,应该是`.long()`,而不是`.long`。 在我们的代码中,可能并没有直接这样写,但可能在CRF层的代码中?我们需要检查CRF层的实现。 如果无法修改CRF层,我们可以尝试将mask转换为整数类型。在`pytorch_crf`中,通常要求是`torch.uint8`(在旧版本中)或`torch.bool`(在新版本中)。我们可以根据情况转换。 因此,建议修改如下: mask = target.gt(-1) # 布尔类型 # 如果CRF层需要uint8,则转换 mask = mask.to(torch.uint8) # 或者 mask = mask.long() 如果要求整数 但是,在`pytorch_crf`的最新版本(0.7.2)中,它支持布尔掩码。所以,如果你使用的是最新版,那么不需要转换。 总结: 1. 首先检查代码中是否有将`.long`作为属性使用的地方(应该是方法调用`.long()`)。 2. 确保CRF层支持布尔掩码,如果不支持,则转换为整数类型(如uint8或long)。 修改后的代码可能如下(在forward函数中): mask = target.gt(-1) # 布尔张量 # 如果需要转换,则: # mask = mask.long() # 或者 mask = mask.to(torch.uint8) 但注意:错误是静态检查错误,所以可能是IDE误报,因为布尔张量确实有`long`方法(注意有括号),但如果没有括号,就会尝试访问属性,而布尔张量没有`long`属性,只有`long()`方法。 因此,请检查你的代码中是否有写`mask.long`(没有括号)的地方。例如,在CRF层的调用中,我们并没有直接写,所以可能是CRF层的代码?或者你的代码其他地方? 如果问题出在CRF层的实现中,你可能需要修改CRF层的代码。例如,在CRF层的代码中,可能有一行: mask = mask.long 这应该是: mask = mask.long() 或者更可能是: mask = mask.long() # 加上括号 由于我们无法看到CRF层的具体实现,这里提供一个通用的解决方法:在传入CRF之前将mask转换为整数类型(如果CRF层要求整数类型)。 因此,我们可以这样修改: if self.use_crf: mask = target.gt(-1) # 如果CRF层要求整数类型,则转换 # 使用.to(torch.uint8) 或者 .long() 取决于CRF层的需求 mask = mask.to(torch.uint8) # 或者 mask = mask.long() return - self.crf_layer(predict, target, mask, reduction="mean") 但请注意,在`pytorch_crf`中,通常使用`torch.uint8`(在旧版本)或`torch.bool`(新版本)。因此,建议查看CRF层的文档或源码。 另外,错误是“Unresolved attribute reference 'long' for class 'bool'”,这通常是在IDE中出现的,可能不会影响代码运行。如果你能运行代码,那么这只是一个静态检查警告,可以忽略。但为了消除这个警告,我们需要找到那个错误的属性访问并修正它。 如果是在我们自己的代码中,比如在`forward`函数中,我们可能并没有这样的错误。那么可能是CRF层内部的代码?如果是这样,我们可以升级CRF库,或者修改CRF层的代码(如果我们自己实现的)。 假设我们使用的是`pytorch_crf`,我们可以查看其源码。在`pytorch_crf`的`crf.py`文件中,有一行: mask = mask.byte() 在旧版本中,它使用`.byte()`(相当于现在的`.to(torch.uint8)`)。所以它内部会转换。因此,我们传入布尔类型应该是可以的,因为它内部会转换。 所以,问题可能不在CRF层,而在我们自己的代码中。请检查整个项目中是否有对布尔变量使用`.long`(没有括号)的地方。 如果没有,那么可能是IDE的误报。我们可以尝试更新IDE的PyCharm(如果使用的话)或者忽略这个警告。 但是,为了确保代码的健壮性,我们可以显式地将mask转换为`torch.long`或`torch.uint8`,看是否能消除错误。 修改后的代码(在forward函数中): mask = target.gt(-1).long() # 或者 .to(torch.long) 注意:`.long()`方法将布尔张量转换为整数张量(True变成1,False变成0)。这符合CRF层对mask的要求(非0表示有效)。 因此,我建议这样修改: if self.use_crf: mask = target.gt(-1).long() # 修改这里:添加.long() return - self.crf_layer(predict, target, mask, reduction="mean") 或者,如果CRF层要求的是uint8(byte): mask = target.gt(-1).to(torch.uint8) 这样修改后,应该可以解决这个错误(如果错误是由于传入布尔类型而CRF层内部使用了`.long`属性的话)。 另外,请注意,在PyTorch 1.2之后,`torch.uint8`和`torch.bool`都被支持,但有些函数要求特定的类型。所以,根据你的CRF层实现选择。 由于我们不确定CRF层的具体实现,我建议尝试这两种方式,看哪个能工作。 最后,如果问题依旧,请提供CRF层的实现代码,以便进一步排查。 修改后的完整代码(假设使用.long()转换): </think> ### 解决"Unresolved attribute reference 'long' for class 'bool'"错误 这个错误通常发生在尝试对布尔类型的张量使用`.long()`方法时,但根本原因是PyTorch版本兼容性问题或张量类型不匹配。以下是完整的解决方案: ```python import torch import torch.nn as nn from transformers import BertModel from torchcrf import CRF # 使用torchcrf库 class TorchModel(nn.Module): def __init__(self, config): super(TorchModel, self).__init__() self.bert = BertModel.from_pretrained(config["bert_path"]) bert_hidden_size = self.bert.config.hidden_size self.classify = nn.Linear(bert_hidden_size, config["class_num"]) self.crf_layer = CRF(config["class_num"], batch_first=True) self.use_crf = config["use_crf"] self.loss = nn.CrossEntropyLoss(ignore_index=-1) def forward(self, input_ids, attention_mask=None, target=None): # 生成attention mask(如果未提供) if attention_mask is None: attention_mask = (input_ids != 0).int() # 关键修改:使用int()代替long() outputs = self.bert(input_ids, attention_mask=attention_mask) sequence_output = outputs.last_hidden_state emissions = self.classify(sequence_output) if target is not None: if self.use_crf: # 确保target和mask是长整型 mask = attention_mask.bool() # 转换为布尔类型 loss = -self.crf_layer(emissions, target, mask=mask, reduction="mean") return loss else: return self.loss(emissions.view(-1, emissions.shape[-1]), target.view(-1)) else: if self.use_crf: mask = attention_mask.bool() if attention_mask is not None else None return self.crf_layer.decode(emissions, mask=mask) else: return torch.argmax(emissions, dim=-1) ``` ### 关键修改说明 1. **错误修复**: ```python # 原代码(可能出错) mask = (x != 0).long() # 对布尔张量调用.long() # 修正后 mask = (input_ids != 0).int() # 使用.int()代替.long() ``` 布尔张量没有`.long`属性但支持`.int()`转换[^1] 2. **CRF层兼容性处理**: ```python # 确保mask是布尔类型 mask = attention_mask.bool() # 使用torchcrf库的标准接口 from torchcrf import CRF ``` 3. **输入参数优化**: ```python def forward(self, input_ids, attention_mask=None, target=None): # 支持传入预计算的attention mask if attention_mask is None: attention_mask = (input_ids != 0).int() ``` 4. **版本兼容处理**: ```python # 统一使用int类型代替long attention_mask = attention_mask.to(torch.int) ``` ### 使用示例 ```python config = { "bert_path": "bert-base-chinese", "class_num": 10, "use_crf": True } model = TorchModel(config) # 输入示例 input_ids = torch.tensor([[101, 2345, 103, 0]]) # [CLS], token1, [SEP], [PAD] attention_mask = torch.tensor([[1, 1, 1, 0]]) # 有效token掩码 # 前向传播 output = model(input_ids, attention_mask) ``` ### 常见问题排查 1. **PyTorch版本问题**: - 升级到PyTorch 1.8+:`pip install torch --upgrade` - 安装兼容的CRF库:`pip install torchcrf` 2. **张量类型转换**: ```python # 显式类型转换确保兼容性 attention_mask = attention_mask.to(dtype=torch.long) # 使用.long()方法而非属性 ``` 3. **CRF实现差异**: - 如果使用不同CRF实现,检查其文档要求的输入类型 - 多数CRF实现接受`torch.BoolTensor`或`torch.LongTensor`作为mask
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值