【转载原因】一直很喜欢阅读那些用朴素的的语言介绍一些理论的基本原理,也一直很喜欢用类比的手法来阐述一个问题。这篇文章轻松的就介绍了点估计的定义、作用、性质、标准等内容。很多人被Cramer-Rao下界这个名词所唬住,但只要看看本文的介绍,一定豁然开朗。
前言
有一则网络笑话:蜜蜂小姐在母亲的安排下,隔天就要和蜘蛛先生结婚,结婚前夕蜜蜂跟妈妈抱怨:「我不想要嫁给蜘蛛那个丑八怪啦!」妈妈一边安抚着蜜蜂一边说:「虽然那个蜘蛛长是不怎么样,好歹人家也是搞网络的!」蜜蜂又说:「可是我觉得蟑螂学长比较好。」妈妈则说:「整天开着出租车在路上跑来跑去,有什么好?」蜜蜂又说:「那妳不觉得隔壁村的苍蝇很帅吗?」妈妈无奈的说:「他长的帅是没错,但也不能找个挑粪的!」
估计
人类的人生和事业,常常面临这种不确定的状况,却一定得做出一个决定,在做决定之前都会先衡量每个决定的优缺点:做了A的决定,就得接受有可能发生的情形。就像蜜蜂嫁给了搞网络的蜘蛛,看似后辈子可以衣食无缺,然而2000年发生了全球网络经济泡沫化,光鲜亮丽的科技新贵也可能会面临失业。因此我们总是在衡量这个、衡量那个,跟统计学里的估计的精神是一样的。美国影集欲望城市里的夏绿蒂,她有着的看穿男人所拥有的资产的能力。当然她是借由某些特征:此人是某拥有美国运通卡?他的房子在哪里?而非唐突的直接询问他到底拥有多少财富。
就像夏绿蒂,在统计的范围里,估计的目的就是借由样本的某些特质来预测母体真正的统计量或参数,因为我们真正在意的是母体或母体的参数为何,实际的情形却是我们无法真正去计算母体里的每个个体,所以藉由样本来达到目的,这个过程,就是估计。
估计法
我们不是神祇,所以我们和夏绿蒂都得藉由一些方法来的进行估计。估计有很多种方法,最常见的就是最大概似估计法与动差法。
最大概似估计法:用一组从同一母体随机抽出的已知样本,倒推母体最有可能的参数;虽然不同的母体有会不同的参数,但从不同的母体可以得到相同的样本,重点是:对此组已知的样本而言,从A母体得到此样本的机率为PA,从B母体得到此样本的机率为PB,若PA>PB,当然猜测样本的母体是A才合理。举例来讲:高雄地区的有位高中生学联考考了非常好的成绩,但我不知道他是哪个高中的学生,我一定会猜他念雄中,当然他可能念中山高中,但是因为雄中的学生考得好成绩的机率非常高,就猜他念雄中,因为会有很高的机率猜对。夏绿蒂想要跟有钱人交往,藉由此人是否拥有美国运通卡是很好的办法,因为要通过银行核卡需要提供一定水平的财富证明,所以此人属于有钱人的机率很高。然而,有件可惜的事情:遇到样本属于哪一个母体的机率皆相等的情况,最大概似法会失灵。
动差法:利用样本原动差去估计母体原动差的观念,获得母体参数的方法。例如我想要知道高雄女中一年级期中考的平均,随机抽取一组同学做样本,假设一阶样本动差会等于一阶母体动差,因为一阶动差就是平均,所以可用样本平均当作母体平均的估计式,也就是说此组同学的成绩的平均,就是雄女一年级的成绩的平均。
估计准则
玩射飞镖的目的是要射中红心,每个玩家可能用不同的方法来瞄准,玩飞镖跟解数学习题不太一样,就算你用对的方法来射,也不一定会命中红心,因为影响结果的除了瞄准的方法,也要把不可抗拒的因素考虑进去。估计法就相当于是射飞镖所用的瞄准的方法,不同的估计法会得到不同的估计式,当然要选择最好的方法,跟射飞镖一样,我关心的是这个估计式是否能够命中,所以有一些准则可以衡量此估计的方法是否合理:
准则:不偏性、有效性、一致性、充分性。
我要射飞镖当然希望命中红心,就是所谓的准,我希望射飞镖能够愈集中愈好,就是所谓的精,愈集中愈精。准和精就是准则的不偏性和有效性。若瞄准的方法会让飞镖偏离红心,或者是结果会太分散,那就不是一个好的方法。统计学用期望值与变异数衡量准和精,估计式本身的期望值若会等于真正母体的参数,那就是不偏,估计式本身的变异数够小,则愈有效。合并准和精的概念,统计学有一个名词是MSE,当MSE愈小,表示估计式愈接近母体参数,所以MSE愈小愈好。若我们找到了一个好方法来射飞镖,那我希望这套方法不是只能够用在这个靶,就算换了别的靶,依然可以继续使用这个方法,不会因为换了别的靶,这个方法就不能使用,满足则称此估计式满足充分性。若可以的话,样本数愈多,估计式结果与母体参数愈接近,满足的话则称其满足一致性。
Cramer-Rao下界
形形色色的估计量有大小不一的变异数,为了要找到合适的估计量,有一个重要的不等式是Cramer-Rao不等式,这个不等式能够帮助我们找到此参数的所有估计量的合理下界,也就是说此不等式告诉我在所有的估计量中,变异数最小能够小到多小,这个值被称为Cramer-Rao下界。用另一个想法,如果有一个估计量他的变异数刚好就是Cramer-Rao下界,那这个估计量被称为最小变异不偏估计量,MVUE。
UMVUE
如果我要找的参数有好几个估计量,其中一个,它不偏,而且在所有的估计量中,他的变异数最小,那这个估计量有个名字叫:均匀最小变异数不偏估计量,简称umvue。我理论注1上认为他是最好的估计量,因为umvue的MSE最小,愈接近命中红心的目标。由于这个估计量最好,透过快捷方式也就是两个定理可以加速找到umvue,第一个是Rao-Blackwell定理,第二个Lehmann-Sheffe定理,这两个定理被合称为Rao-Blackwell-Lehmann-Sheffe定理,说明我可以拿任何一个不偏估计量,透过给此不偏估计量完备注2充分性的的条件,让此不偏估计量的变异数变成最小,那这个被改造过后的不偏估计量正好符合umvue的资格,于是这个被改造过后的不偏估计量就是母体参数的umvue,而且这个umvue具有唯一性;就好像走伸展台模特儿要够高够漂亮,但符合模特儿资格的人条件是身高要够,经过外表改造,他也能走上伸展台;于是Rao-Blackwell-Lehmann-Sheffe定理又被称为变异数改进定理;另一个Lehmann-Sheffe定理告诉我的是,这个umvue是唯一的。
藉由以上的定理,可以知道如果一个不偏估计量,满足完备充分性,则此估计量必为umvue;因此,如果有一个完备充分统计量,将它调整成不偏,就是umvue,好比拿有个够漂亮的人但身高不够,我只要把他的身高调整成足够的身高,那他也能当模特儿了!(假如身高能调整的话。)
结语
估计存在在太多地方了!模拟实验、抽样调查、财务决策;香港富商李嘉诚执业二十七年从未亏损,他说因为他总是想到最坏的情况才做决策。他也是用估计来衡量各个决策的所会面临的风险,才做决策。尽管做了对的估计,也并非就不会遇到不想要的结果,要知道,在这个充满随机性的世界里,什么事情都是有可能发生的!
※注1:umvue未必是最好的估计量,在某些情形下,umvue会非常不合理。
※注2:完备性:一统计量的机率密度函数的pdf族,此族在无论参数为何的条件下,若此统计量的期望值是0,此统计量也是0,那这个统计量俱有完备性。
Reference:
程大器(2006) 统计学理论与应用
郭明庆(2006) 数理统计
黄文璋(2007) 统计探索