量化回测框架Backtrader【4】-中枢模块Cerebro

本文详细介绍了Backtrader库在金融回测中的应用,包括Cerebro作为核心模块的角色、回测流程、数据管理、策略添加、组件交互以及回测逻辑。Cerebro负责管理数据feed、策略、观察器和分析器,执行回测并绘制图表。文章还讲解了如何添加Datafeed、策略、调整运行模式和调用绘图模块。回测过程涉及数据同步、订单处理和策略执行。最后,文章强调了Cerebro在回测结果分析和绘图中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一, 获取,创建回测所需的各个组件

二, 执行回测

三, 返回结果

四, 调用绘图模块进行绘图

五, 回测逻辑

结语


这讲会涉及到很多之前没讲过的概念,这些坑暂时先留着,后面的文章中都会慢慢填上。

已经看完前几讲的细心的小伙伴应该能看到,每个完整的例子里都定义了Cerebro这个对象,而且是几乎从头运行到尾。不难看出,这个Cererbro是一个非常重要和关键的模块。

Cerebro这个单词本身的意思是大脑,其实跟这个模块的作用很相符,就是在整个框架中起到统领各方的功能。他会参与到回测从创建到收尾的几乎所有的部分,这其中包括了:

  • 创建并管理所有组件,包括原始数据(data feed),策略,观察器,分析器和记录器
  • 执行回测
  • 返回结果
  • 调用绘图模块进行绘图

以下就按这个顺序依次进行说明。

一, 获取,创建回测所需的各个组件

创建Cerebro

cerebro = bt.Cerebro(**kwargs)

可以通过参数**kwargs改变运行方式,主要有如下三种运行方式:

预加载(默认值:True)

最通用的模式,预加载数据测试策略

runonce(默认值:True)

并行运行指标,以加快运行速度。 此时策略和观察器是基于事件运行的

实时(默认:False)

实时模式,设置这个模式时,前面两个参数自动设为False

添加Data feed

cerebro.adddata(data)

这里的data就是data feed对象,第二讲已经讲了如何创建它们。也可以添加重采样数据或回放数据

cerebro.resampledata(data, timeframe=bt.TimeFrame.Days)
### Backtrader 框架使用教程 #### 一、简介 Backtrader 是一个开源的量化交易框架,适用于股票、期货以及期权等多种金融工具的与实时交易。该平台不仅提供了丰富的功能和灵活的接口来满足复杂的期权需求[^1],还覆盖了从数据预处理至实际部署的一系列流程,使得开发者可以高效地构建稳健的交易模型[^2]。 #### 二、核心组件概述 为了更好地理解 backtrader 的工作原理及其应用方式,以下是其主要组成部分: - **Cerebro**: 构建整个系统的引擎,负责管理所有其他模块并执行具体的买卖操作。 - **Data Feeds (数据源)**: 支持多种格式的数据输入,包括 CSV 文件、Pandas DataFrame 和在线 API 接口等。 - **Strategies (策略类)**: 用户自定义的投资逻辑实现处;所有的决策都基于此类中的方法完成。 - **Indicators (技术指标库)**: 提供了大量的内置计算函数用于辅助分析市场趋势。 - **Orders (订单机制)**: 定义下单行为的具体参数设置。 - **Observers & Analyzers**: 前者用来监控运行状态而后者则帮助评估性能表现。 - **Broker (模拟/真实经纪商)**: 负责处理资金账户变动情况下的资产分配问题。 - **Plotting (绘图展示)**: 可视化最终的结果以便直观查看历史走势变化。 这些特性共同构成了 backtrader 强大而又易于使用的体系结构[^3]。 #### 三、简单示例代码 下面是一段简单的 Python 示例程序,演示如何利用 backtrader 进行基本的时间序列数据分析及策略试: ```python import datetime as dt import backtrader as bt class TestStrategy(bt.Strategy): def __init__(self): self.dataclose = self.datas[0].close self.order = None def next(self): if not self.position: if self.dataclose < self.data.close[-1]: self.buy() elif self.dataclose >= self.data.close[-1]: self.sell() if __name__ == '__main__': cerebro = bt.Cerebro() data = bt.feeds.YahooFinanceCSVData( dataname='AAPL.csv', fromdate=dt.datetime(2020, 1, 1), todate=dt.datetime(2020, 12, 31)) cerebro.adddata(data) cerebro.addstrategy(TestStrategy) print('Starting Portfolio Value:', cerebro.broker.getvalue()) cerebro.run() print('Ending Portfolio Value:', cerebro.broker.getvalue()) ``` 此脚本创建了一个名为 `TestStrategy` 的新策略对象,在每次价格下跌时买入而在上涨时卖出。接着初始化 Cerebro 实例并将上述策略添加进去。最后读取苹果公司(AAPL)的历史股价作为输入来进行仿真运算,并输出初始净值与结束后的总资产价值对比结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值