PAT 1019. 数字黑洞 (20)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xnh_565175944/article/details/78659966

给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

现给定任意4位正整数,请编写程序演示到达黑洞的过程。

输入格式:

输入给出一个(0, 10000)区间内的正整数N。

输出格式:

如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。

输入样例1:
6767
输出样例1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例2:
2222
输出样例2:
2222 - 2222 = 0000
根据题意可知,输出的数据在0-10000之间(这个很重要),然后就是4位进行排序,用递增减去递减的排序
所得的和再进行递增减去递减.....直到6174出现停止
代码如下:
#include<iostream>
#include<algorithm>
using namespace std;
int b,c;
int paixu(int num){
	int a[4]={num%10,num/10%10,num/100%10,num/1000%10};
	sort(a,a+4);                               //进行排序
	c = a[0]*1000+a[1]*100+a[2]*10+a[3];	   //递减
	b = a[3]*1000+a[2]*100+a[1]*10+a[0];	   //递增
}
int main()
{
	int num1;
	cin>>num1;
	if(num1<=0&&num1>=10000) return 0;
	do{
		paixu(num1);           //进行排序 为b c赋值  b为最大数 c为最小数
		num1 = b - c;	       //算出b-c的结果
		printf("%04d - %04d = %04d\n",b,c,num1);  //进行输出
	}
	while(num1!=6174&&num1!=0);          //得用do-while型 尝试过几次while型 结果都是19分,因为题目中说 输入数据在0-10000之间,所以6174也在考虑范围
	return 0;
}


没有更多推荐了,返回首页