python模块教程(一)Numpy介绍:矩阵运算、函数运算、线性代数运算、信号处理运算等等...

第一章、简介

        Numpy是python语言中的一个数学库或称模块,经常结合tensorflow等模块使用,广泛的应用在AI领域。Numpy主要功能包括:

  • 矩阵运算。
  • 函数运算
  • 线性代数运算
  • 信号处理运算
  • 等等

第二章、numpy模块的矩阵运算

2.1、创建矩阵

print("-----------------创建1行5列的矩阵------------------")
array1x5 = np.array([1, 3, 2, 10, 200])  # 创建1行5列的矩阵
print(array1x5)  # 输出矩阵array1x5
print(array1x5[1])  # 输出矩阵array1x5的第二个元素

print("-----------------创建3行4列的矩阵-----------------")
array3x4 = np.array([[11, 22, 33, 44], [4, 5, 6, 7], [111, 222, 333, 444]])  # 创建1行5列的矩阵
print(array3x4)  # 输出矩阵array3x4
print(array3x4[0])  # 输出矩阵array3x4的第一个数据

输出结果:

-----------------创建1行5列的矩阵------------------
[  1   3   2  10 200]
3
-----------------创建3行4列的矩阵-----------------
[[ 11  22  33  44]
 [  4   5   6   7]
 [111 222 333 444]]
[11 22 33 44]

2.1、矩阵元素的获取

2.2、矩阵元素的获取

print("-----------------输出矩阵的某个元素------------------")
array1x5_element3 = array1x5[3]
print(array1x5_element3)
print("-----------------输出矩阵的某组元素------------------")
array3x4_array = array3x4[1]
print(array3x4_array)

输出结果:

-----------------输出矩阵的某个元素------------------
10
-----------------输出矩阵的某组元素------------------
[4 5 6 7]

2.3、矩阵元素的按条件截取

rint("-----------------输出矩阵大于3的元素------------------")
array1x5_elementMoreThan3 = array1x5[array1x5 > 3]
print(array1x5_elementMoreThan3)

输出结果:

-----------------输出矩阵大于3的元素------------------
[ 10 200]

2.4、矩阵合并

array3x4_copy = np.array([[11, 22, 33, 44], [4, 5, 6, 7], [111, 222, 333, 444]])
print("-----------------输出两个矩阵按行合并后的元素: 即将第二个矩阵的每行,按行拼接在第一个矩阵的每行后面------------------")
array3x4_combine_row = np.hstack([array3x4_copy, array3x4])
print(array3x4_combine_row)
print("-----------------输出两个矩阵按行合并后的元素:按列拼接------------------")
array3x4_combine_column = np.vstack([array3x4_copy, array3x4])
print(array3x4_combine_column)

输出结果:

-----------------输出两个矩阵按行合并后的元素: 即将第二个矩阵的每行,按行拼接在第一个矩阵的每行后面------------------
[[ 11  22  33  44  11  22  33  44]
 [  4   5   6   7   4   5   6   7]
 [111 222 333 444 111 222 333 444]]
-----------------输出两个矩阵按行合并后的元素:按列拼接------------------
[[ 11  22  33  44]
 [  4   5   6   7]
 [111 222 333 444]
 [ 11  22  33  44]
 [  4   5   6   7]
 [111 222 333 444]]

2.5、特殊矩阵

print("-----------------输出 float类型的1x10维度全零矩阵-----------------")
zerosArray1x10 = np.zeros(10, float)
print(zerosArray1x10)
print("-----------------输出 int类型的3x10维度全零矩阵-----------------")
zerosArray3x10 = np.zeros((3, 10), int)
print(zerosArray3x10)
print("-----------------输出 int类型的3x10维度全1矩阵-----------------")
onesArray3x10 = np.ones((3, 10), int)
print(onesArray3x10)

输出结果:

-----------------输出 float类型的1x10维度全零矩阵-----------------
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
-----------------输出 int类型的3x10维度全零矩阵-----------------
[[0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0]]
[[1 1 1 1 1 1 1 1 1 1]
 [1 1 1 1 1 1 1 1 1 1]
 [1 1 1 1 1 1 1 1 1 1]]

第三章、numpy模块的函数运算

3.1、三角函数

print("-----------------输出角度的正弦弧度值----------------")
angle30 = 30
angleArray1x3 = np.array([0, 30, 60, 90])
print(np.sin(angle30*np.pi/180))
print(np.sin(angleArray1x3*np.pi/180))

输出结果:

-----------------输出角度的正弦弧度值----------------
0.49999999999999994
[0.        0.5       0.8660254 1.       ]

第四章、numpy模块的线性代数运算

后续补上

第五章、numpy模块的信号处理运算

后续补上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我爱AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值