1.背景资料
是一个数学的应用问题:
已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。 这个就是约瑟夫环问题的实际场景,有一种是要通过输入n,m,k三个正整数,来求出列的序列。这个问题采用的是典型的循环链表的数据结构,就是将一个链表的尾元素指针指向队首元素。 p->link=head 解决问题的核心步骤: 1.建立一个具有n个链结点,无头结点的循环链表 2.确定第1个报数人的位置 3.不断地从链表中删除链结点,直到链表为空 void JOSEPHUS(int n,int k,int m) //n为总人数,k为第一个开始报数的人,m为出列者喊到的数 { /* p为当前结点 r为辅助结点,指向p的前驱结点 list为头节点*/ LinkList p,r,list; /*建立循环链表*/ for(int i=0,i<n,i++) { p=(LinkList)malloc(sizeof(LNode)); p->data=i; if(list==NULL) list=p; else r->link=p; r=p; } p>link=list; /*使链表循环起来*/ p=list; /*使p指向头节点*/ /*把当前指针移动到第一个报数的人*/ for(i=0;i<k;i++) { r=p; p=p->link; } /*循环地删除队列结点*/ while(p->link!=p) { for(i=0;i<m;i++) { r=p; p=p->link; } r->link=p->link; printf("被删除的元素:%4d ",p->data); free(p); p=r->link; } printf("\n最后被删除的元素是:%4d",P->data); } 无论是用链表实现还是用数组实现都有一个共同点:要模拟整个 游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n ,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间 内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号, 而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规, 实施一点数学策略。 为了讨论方便,先把问题稍微改变一下,并不影响原意: 问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出 ,剩下的人继续从0开始报数。求胜利者的编号。 我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组 成了一个新的约瑟夫环(以编号为k=m%n的人开始): k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2 并且从k开始报0。 现在我们把他们的编号做一下转换: k --> 0 k+1 --> 1 k+2 --> 2 ... ... k-2 --> n-2 k-1 --> n-1 变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这 个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x 变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相 信大家都可以推出来:x‘=(x+k)%n 如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就 行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是 一个倒推问题!好了,思路出来了,下面写递推公式: 令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然 是f[n] 递推公式 f[1]=0; f=(f[i-1]+m)%i; (i>1) 有了这个公式,我们要做的就是从1-n顺序算出f的数值,最后结 果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1 由于是逐级递推,不需要保存每个f,程序也是异常简单: #include <stdio.h> intmain( void) { intn, m, i, s=0; printf ("N M = "); scanf("%d%d", &n, &m); for (i=2; i<=n; i++) s=(s+m)%i; printf ("The winner is %d\n", s+1); } 这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高 。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用 数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执 行效率。 |