约瑟夫环

1.背景资料

是一个数学的应用问题:

    已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。

链表方法

   这个就是约瑟夫环问题的实际场景,有一种是要通过输入n,m,k三个正整数,来求出列的序列。这个问题采用的是典型的循环链表的数据结构,就是将一个链表的尾元素指针指向队首元素。 p->link=head

   解决问题的核心步骤:
       1.建立一个具有n个链结点,无头结点的循环链表
       2.确定第1个报数人的位置
       3.不断地从链表中删除链结点,直到链表为空

void JOSEPHUS(int n,int k,int m) //n为总人数,k为第一个开始报数的人,m为出列者喊到的数
{
    /* p为当前结点  r为辅助结点,指向p的前驱结点  list为头节点*/
    LinkList p,r,list;

    /*建立循环链表*/
     for(int i=0,i<n,i++)
    {
        p=(LinkList)malloc(sizeof(LNode));
        p->data=i;
        if(list==NULL)
            list=p;
        else
            r->link=p;
        r=p;
    }
    p>link=list; /*使链表循环起来*/
    p=list; /*使p指向头节点*/

    /*把当前指针移动到第一个报数的人*/
    for(i=0;i<k;i++)
    {
        r=p;
        p=p->link;
    }

    /*循环地删除队列结点*/
    while(p->link!=p)
    {
        for(i=0;i<m;i++)
        {
            r=p;
            p=p->link;
        }
        r->link=p->link;
        printf("被删除的元素:%4d ",p->data);
        free(p);
        p=r->link;
    }
    printf("\n最后被删除的元素是:%4d",P->data);
}



Josephus(约瑟夫)问题的数学方法


     无论是用链表实现还是用数组实现都有一个共同点:要模拟整个
游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n
,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间
内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,
而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,
实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出
,剩下的人继续从0开始报数。求胜利者的编号。
我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组
成了一个新的约瑟夫环(以编号为k=m%n的人开始):
   k   k+1   k+2   ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0。
现在我们把他们的编号做一下转换:
k      --> 0
k+1    --> 1
k+2    --> 2
...
...
k-2    --> n-2
k-1    --> n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这
个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x
变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相
信大家都可以推出来:x‘=(x+k)%n
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就
行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是
一个倒推问题!好了,思路出来了,下面写递推公式:

令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然
是f[n]
递推公式
f[1]=0;
f=(f[i-1]+m)%i;   (i>1)
有了这个公式,我们要做的就是从1-n顺序算出f的数值,最后结
果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
由于是逐级递推,不需要保存每个f,程序也是异常简单:
#include <stdio.h>
intmain( void)
{
    intn, m, i, s=0;
   printf ("N M = "); scanf("%d%d", &n, &m);
   for (i=2; i<=n; i++) s=(s+m)%i;
   printf ("The winner is %d\n", s+1);
}
这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高
。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用
数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执
行效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值