LucienShui

博客转移至lucien.ink

洛谷P1064 - 金明的预算方案 - 动态规划

题解链接

https://www.lucien.ink/archives/222/


题目链接

https://www.luogu.org/problemnew/show/P1064


题目

题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件

电脑 打印机,扫描仪

书柜 图书

书桌 台灯,文具

工作椅 无

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:

v[j1]w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中为乘号)

请你帮助金明设计一个满足要求的购物单。

输入格式:

输入的第1行,为两个正整数,用一个空格隔开:

N m (其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)

从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数

v p q (其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)

输出格式:

输出只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。


思路

  首先这个题目是一个01背包,其次,因为一个主件最多只有两个附件,所以对于一个主件,我们有五种决策:

1.不选,然后去考虑下一个
2.选且只选这个主件
3.选这个主件,并且选附件1
4.选这个主件,并且选附件2
5.选这个主件,并且选附件1和附件2

  然后遍历所有的主件跑01背包即可。


实现

#include <bits/stdc++.h>
int dp[3207], cost[67][7], val[67][7], len[67], tot, idx[67];
int n, m;
int main() {
//    freopen("in.txt", "r", stdin);
    scanf("%d%d", &n, &m);
    n /= 10;
    for (int i = 1, v, p, q, cur; i <= m; i++) {
        scanf("%d%d%d", &v, &p, &q);
        v /= 10;
        cur = q ? idx[q] : idx[i] = ++tot;
        cost[cur][len[cur]] = v;
        val[cur][len[cur]++] = v * p;
    }
    for (int i = 1; i <= tot; i++) {
        for (int v = n; v >= cost[i][0]; v--) {
            dp[v] = std::max(dp[v], dp[v - cost[i][0]] + val[i][0]);
            for (int k = 1; k <= 2; k++) if (v >= cost[i][0] + cost[i][k])
                    dp[v] = std::max(dp[v], dp[v - cost[i][0] - cost[i][k]] + val[i][0] + val[i][k]);
            if (v >= cost[i][0] + cost[i][1] + cost[i][2])
                dp[v] = std::max(dp[v], dp[v - cost[i][0] - cost[i][1] - cost[i][2]] + val[i][0] + val[i][1] + val[i][2]);
        }
    }
    printf("%d\n", dp[n] * 10);
    return 0;
}
阅读更多
版权声明:来自lucien.ink,转载请注明文章出处。 https://blog.csdn.net/xs18952904/article/details/80338974
文章标签: 题解 动态规划
个人分类: 题解 动态规划
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

洛谷P1064 - 金明的预算方案 - 动态规划

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭