一开始想到的状态转移方程是:dp[i][j] = max{dp[i-1][j], dp[i-1][j-1] + sum[k]-sum[k-l[j]]。表示从第i个数字中,已经选择了j个关系。枚举k来找到最优问题。但是这么是不对的啊,因为这样考虑的话你得考虑一下i-1个结束的位置。否则的话就会有重复子区间,不符合要求啊。
后来 看了网上有一人把状态转移方程是这么写的:dp[i][j] = max(dp[i][j] , dp[k][j-1]+sum[i]-sum[i-l[j]])。虽然只是改了一点地方,这样就对了啊。因为dp的侧重点不一样,前一个是从人中选,后一个是从关系中选,所以后面一种对啊,可以避免重复的情况了啊。佩服啊,dp还得多做啊。
Max Sum Plus Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 1143 Accepted Submission(s): 570
Problem Description
给定一个由n个正整数组成的整数序列
a1 a2 a3 ... an
求按先后次序在其中取m段长度分别为l1、l2、l3...lm的不交叠的连续整数的和的最大值。
a1 a2 a3 ... an
求按先后次序在其中取m段长度分别为l1、l2、l3...lm的不交叠的连续整数的和的最大值。
Input
第一行是一个整数n(0 ≤ n ≤ 1000),n = 0表示输入结束
第二行的第一个数是m(1 ≤ m ≤ 20),
第二行接下来有m个整数l1,l2...lm。
第三行是n个整数a1, a2, a2 ... an.
第二行的第一个数是m(1 ≤ m ≤ 20),
第二行接下来有m个整数l1,l2...lm。
第三行是n个整数a1, a2, a2 ... an.
Output
输出m段整数和的最大值。
Sample Input
3 2 1 1 1 2 3 4 2 1 2 1 2 3 5 0
Sample Output
5 10
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-7
#define M 10001000
#define LL __int64
//#define LL long long
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
const int maxn = 1010;
using namespace std;
int dp[maxn][30];
int sum[maxn];
int num[maxn];
int l[maxn];
int main()
{
int n;
while(cin >>n)
{
if(!n)
break;
int m;
cin >>m;
for(int i = 1; i <= m; i++)
cin >>l[i];
memset(dp, 0 , sizeof(dp));
memset(sum, 0 , sizeof(sum));
for(int i = 1; i <= n; i++)
{
cin >>num[i];
sum[i] = sum[i-1]+num[i];
}
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
for(int k = i-l[j]; k>= 0; k--)
dp[i][j] = max(dp[i][j], dp[k][j-1]+sum[i]-sum[i-l[j]]);
int _max = 0;
for(int i = 1; i <= n; i++)
_max = max(dp[i][m], _max);
cout<<_max<<endl;
}
return 0;
}