- 博客(90)
- 收藏
- 关注
原创 1.17、基于竞争层的竞争学习(matlab)
在MATLAB中实现基于竞争层的竞争学习可以利用自组织特征映射(Self-Organizing Map,简称SOM)算法。SOM是竞争学习的一种形式,其将输入数据在一个高维网格网络中进行竞争学习,从而实现特征提取和数据可视化。准备输入数据集,确保数据已经进行归一化处理。初始化竞争层(SOM)网络的权重矩阵,每个神经元对应一个权重向量,与输入数据的维度相同。训练模型:迭代输入数据集,对每个输入数据计算与各个神经元的距离,并选择最近的神经元作为胜者,根据胜者神经元和邻域函数更新权重矩阵。
2024-07-20 21:56:38
1289
7
原创 1.31、基于长短记忆网络(LSTM)的发动机剩余寿命预测(matlab)
创建一个 LSTM 网络,该网络包含一个具有 200 个隐藏单元的 LSTM 层,然后是一个大小为 50 的全连接层和一个丢弃概率为 0.5 的丢弃层。使用 MATLAB 加载发动机传感器数据,包括温度、压力、振动等信息。对数据进行清洗、归一化处理。将数据按时间序列进行整理,构建时间窗口,以便输入 LSTM 模型。使用 MATLAB 中的 Neural Network Toolbox 创建 LSTM 模型。定义 LSTM 网络的层数、神经元数量、学习率等超参数。
2024-07-19 21:51:12
1416
7
原创 1.33、激活可视化卷积神经网络(matalb)
激活可视化是一种重要的技术,可以帮助我们理解卷积神经网络(CNN)中每个卷积层学到的特征,并揭示网络对输入数据的处理方式。在MATLAB中,可以通过以下步骤实现激活可视化:加载预训练的CNN模型:使用MATLAB的Deep Learning Toolbox加载预训练好的CNN模型,比如VGG、ResNet等。选择要可视化的卷积层:选择CNN模型中的某个卷积层,通常选择靠近输出层的卷积层以观察更抽象的特征。提取特征图:通过将输入图像传入 CNN 模型并获取选择的卷积层的输出特征图。
2024-07-18 00:20:24
1350
9
原创 3.4、matlab实现SGM/BM/SAD立体匹配算法计算视差图
立体匹配算法是计算机视觉中用于解决立体视觉问题的一种重要技术。它的目标是确定左右两幅图像中对应像素之间的视差,从而实现深度信息的获取和三维重建。基于块匹配(Block Matching):该算法将图像划分为小块,然后在左图像中选择一个块,在右图像中搜索与之最相似的块,最终确定视差值。基于相似性度量的方法:如SAD(Sum of Absolute Differences)、SSD(Sum of Squared Differences)等,通过计算像素值的差异来找到最佳匹配。
2024-07-18 00:20:05
1507
6
原创 1.29、基于浅层神经网络的数据拟合(matlab)
首先,需要准备训练数据和测试数据。确保数据已经经过预处理和标准化,以便神经网络更好地学习和拟合。网络设计:定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量、激活函数等。可以选择不同类型的网络结构,如全连接神经网络、卷积神经网络等。使用训练数据来训练神经网络模型。可以选择不同的优化算法和损失函数,如梯度下降算法和均方误差损失函数。通过多次迭代更新权重参数,使模型能够更好地拟合数据。使用测试数据来评估训练好的模型的性能。可以计算预测精度、误差率等指标,以评估模型的准确性和泛化能力。
2024-07-12 07:48:54
1463
4
原创 1.28、双输入感知器分类(matlab)
感知器是一种最简单的神经网络模型,用于二元分类任务。它接收一组输入特征,对这些特征进行加权求和后,经过一个激活函数输出一个二元的结果,通常为0或1。感知器的原理是基于神经元工作原理的简化模型。其输入特征通过权重相乘后求和,再加上一个偏置值,然后经过激活函数(例如阈值函数)得到输出结果。感知器根据输出结果进行分类决策,将输入样本归为两类中的一类。训练感知器的过程通过不断迭代调整权重和偏置值使分类结果更加准确。当感知器对训练集中的所有样本都能正确分类时,说明感知器已经收敛。
2024-07-11 07:38:07
1331
11
原创 1.27、基于径向基神经网络的曲线拟合(matlab)
径向基神经网络(Radial Basis Function Neural Network, RBFNN)是一种人工神经网络,它通过在输入空间中使用径向基函数来进行数据处理和模式识别。RBFNN通常由输入层、隐含层和输出层组成,其中隐含层使用径向基函数来处理输入数据。RBFNN的训练过程通常包括两个阶段:中心点确定和权重确定。在中心点确定阶段,通常使用聚类算法(如k-means算法)来确定隐含层中径向基函数的中心点;在权重确定阶段,通过最小化损失函数(通常是均方误差)来确定隐含层到输出层的权重。
2024-07-10 07:45:02
1377
4
原创 3.2、matlab单目相机标定原理、流程及实验
选取合适的标定板,如Checkerboard或Dot grid,确保标定板图案清晰可识别。使用单目相机拍摄多张标定板图像,并确保角度和位置变化。导入图像:将拍摄的标定板图像导入MATLAB环境中,使用imread函数加载图像。运行函数打开相机标定工具窗口。在相机标定工具窗口中,通过“Add Images”按钮添加标定板图像,然后点击“Calibrate”按钮进行相机标定。在标定完成后,可以查看相机的内部参数(如焦距、主点位置)和外部参数(如相机位置和姿态信息)。
2024-07-09 23:36:04
1842
4
原创 1.26、基于概率神经网络(PNN)的分类(matlab)
概率神经网络(PNN)是一种用于模式分类的人工神经网络。它基于贝叶斯定理和高斯混合模型,可以用于处理各种类型的数据,包括连续型数据和离散型数据。PNN在处理分类问题时比传统的神经网络更加灵活,具有更高的准确性和泛化能力。PNN的基本工作原理是将输入数据集分别与样本集中的每个样本计算相似度,并根据相似度来对输入数据进行分类。PNN由四层组成:输入层、模式层、竞争层和输出层。输入数据首先通过输入层传递到模式层,再通过竞争层计算相似度,最后根据相似度在输出层进行分类。
2024-07-09 07:31:06
1338
7
原创 1.25、最近邻向量量化(LVQ) 网络训练对输入向量进行分类
最近邻向量量化(LVQ)是一种用于对输入向量进行分类的神经网络模型。以下是LVQ的一些关键特点和总结:LVQ利用一组原型向量(参考向量)表示不同的类别,在训练过程中调整原型向量的权重以逼近输入向量。LVQ训练过程中,网络通过计算输入向量与每个原型向量之间的距离,并更新距离最近的原型向量的权重。当LVQ网络收敛时,原型向量将会分布在输入空间中,形成不同类别的“聚类”,从而实现分类功能。在分类时,输入向量会与每个原型向量进行比较,选择与之最接近的原型向量所代表的类别作为输出结果。
2024-07-08 07:13:55
1407
10
原创 1.23、一维和二维自组织映射(matlab)
使用MATLAB实现一维和二维自组织映射(SOM)可以通过使用MATLAB的 Neural Network Toolbox 来实现。首先,准备输入数据集并进行必要的预处理。使用 MATLAB 的 selforgmap 函数来创建一维或二维自组织映射网络。% 创建一个 8x8 的二维SOM网络使用 train 函数来训练SOM网络。可以使用 plotsomhits 函数来可视化SOM网络的节点之间的距离。使用 MATLAB 的 sim 函数来使用训练好的SOM网络进行数据映射。
2024-07-06 10:29:25
1190
3
原创 1.22、基于长短期记忆网络的心电图(ECG)信号分类(matlab)
使用双向 LSTM 层 bilstmLayer,其前向和后向检测序列将输入大小指定是大小为 1 的序列,指定输出大小为 50 的一个双向 LSTM 层,并输出序列的最后一个元素步骤总结:数据准备收集具有标记的ECG信号数据集,包括正常心电图和心律失常等类别的数据。确保数据集质量和标记的准确性。数据预处理对ECG信号进行必要的预处理,如去噪、滤波、标准化等,以提高数据质量。数据格式转换。
2024-07-05 07:24:43
1590
7
原创 1.21、基于深度学习网络的数字分类(matlab)
在本例中为 28×28×1。这些数字对应于高度、宽度和通道大小。数字数据由灰度图像组成,因此通道大小(颜色通道)为 1。对于彩色图像,通道大小为 3,对应于 RGB 值。您不需要打乱数据,因为trainnet默认会在训练开始时打乱数据。trainnet还可以在训练过程中的每轮训练开始时自动打乱数据。首先,你需要准备包含数字图像和对应标签的数据集。Matlab提供了数据存储和处理的功能,可以方便地加载和处理数据。
2024-07-04 11:06:44
1343
5
原创 1.20、基于去噪卷积神经网络的彩色图像去噪(matlab)
基于去噪卷积神经网络的彩色图像去噪在Matlab中的实现流程包括数据准备、网络设计、网络训练、网络验证和去噪处理。准备包含训练集和验证集的彩色图像数据,同时生成带有噪声的图像数据用于训练。Matlab提供了丰富的图像处理工具和函数,可用于数据加载、预处理等操作。设计一个包含卷积层、池化层、激活函数和损失函数的去噪卷积神经网络模型。Matlab的深度学习工具箱提供了丰富的函数和工具,可用于构建和调整网络结构。使用训练集数据对网络进行训练,通过优化算法(如随机梯度下降)来调整网络参数以最小化损失函数。
2024-07-03 09:16:34
1217
4
原创 1.19、基于卷积神经网络的调制分类(matlab)
基于卷积神经网络(CNN)的调制分类在Matlab中可以通过深度学习工具箱等相关工具来实现。数据准备:准备带有标签的调制信号数据集,确保每个样本包含一个已知调制方式的信号。数据预处理:对信号数据进行预处理,包括归一化、降噪等操作,以保证数据的质量。数据特征提取:将信号数据转换为适合CNN输入的格式,可以在时域或频域下提取信号特征,并将其表示为矩阵形式。构建CNN模型:定义CNN模型的结构,包括卷积层、池化层、激活函数层和全连接层等。可以根据具体需求自定义网络结构。模型训练。
2024-07-02 00:09:28
1543
6
原创 1.18、基于长短期记忆 (LSTM) 网络对序列数据进行分类
将输入大小指定为输入数据的通道数。指定一个具有 120 个隐藏单元的双向 LSTM 层,并输出序列的最后一个元素。最后,包括一个输出大小与类的数量匹配的全连接层,后跟一个 softmax 层。基于长短期记忆(LSTM)网络对序列数据进行分类是一种重要的深度学习任务,适用于处理具有序列关系的数据,如时间序列数据、自然语言处理等。LSTM网络结构LSTM是一种适用于处理长期依赖问题的循环神经网络(RNN)变种,能够有效地捕捉序列数据中的长期依赖关系。
2024-07-01 00:04:58
2125
13
原创 1.16、基于K 均值聚类实现基于颜色的分割(matlab)
聚类是一种分离对象组的方法。K 均值聚类将每个对象视为在空间中有一个位置。它将对象划分为若干分区,使每个簇中的对象尽可能彼此靠近,并尽可能远离其他簇中的对象。使用 imsegkmeans 函数将图像像素按值分成一个颜色空间内的若干个簇。RGB 和 L*a*b* 颜色空间中执行图像的k 均值聚类,以显示使用不同颜色空间如何改进分割结果。基于K均值聚类实现基于颜色的分割的步骤可以总结为:读取图像:首先需要使用MATLAB中的imread函数读取要进行颜色分割的图像。
2024-06-29 00:43:19
1465
5
原创 2.8、matlab求导、求偏导、求定积分、不定积分、数值积分和数值二重积分
matlab求导、求偏导、求定积分、不定积分、数值积分和数值二重积分
2024-06-28 15:33:14
2338
4
原创 1.15、基于主成分分析和聚类分析的基因表达分析(matlab)
主成分分析主要用于降维和特征提取,聚类分析用于数据分类和群体分析。这两种方法在数据分析、机器学习和模式识别等领域具有广泛的应用,有助于理解和挖掘数据背后的规律和关联。基于主成分分析(PCA)和聚类分析的基因表达数据分析在生物信息学和生物医学研究中具有重要意义。首先,需要获取基因表达数据集,包含多个基因在不同条件下的表达值。数据应进行预处理,如去除噪声、归一化处理等,以保证数据质量和可靠性。a. 使用MATLAB的PCA函数对预处理后的基因表达数据进行主成分分析。
2024-06-28 00:59:10
1259
4
原创 1.14、基于NARX神经网络的磁悬浮建模(matlab)
数据准备:首先,需要准备用于训练和测试的磁悬浮系统的输入和输出数据,包括磁力、电流、位置、速度等信息。数据可以被保存在MATLAB的数据文件中,并加载到工作空间中。使用MATLAB的神经网络工具箱,创建一个NARX神经网络。需要定义网络的层次结构、节点数、激活函数等参数。通常,NARX网络包括自回归层和外部输入层。数据预处理:对加载的数据进行预处理,包括去除噪声、归一化处理等操作,以确保数据质量和网络训练的稳定性。使用MATLAB的训练函数,如trainlm或者trainbr,对NARX神经网络进行训练。
2024-06-27 00:03:06
1562
4
原创 1.13、基于归一化感知器的输入向量分类(matlab)
在MATLAB中实现基于归一化感知器的输入向量分类可以按照以下步骤进行:数据准备:准备包含特征值和标签的训练数据集。确保特征值已经进行了归一化处理。参数初始化:初始化权重向量和偏置项,可以随机初始化或者设置为零向量。训练模型:利用训练数据集训练归一化感知器模型。通过迭代计算,更新权重向量和偏置项,直至模型收敛或达到设定的迭代次数。预测分类:利用训练好的感知器模型对测试数据集进行分类预测,计算准确率或者其他评估指标。% 准备训练数据集% 特征值矩阵,已进行归一化处理% 标签向量% 初始化参数。
2024-06-26 10:47:34
1437
5
原创 1.11、基于连续Hopfield神经网络的不稳定平衡
连续Hopfield神经网络在动力学演化过程中可能会出现不稳定平衡现象,即网络可能会收敛到一个状态,但该状态并不是所期望的存储模式,而是达到一个局部极小值或者一个不正确的吸引子。不稳定平衡的出现可能是由于网络动力学规则和激活函数的非线性性质导致的,以及在网络训练过程中存在的噪声和误差等因素造成的。不稳定平衡状态可能会影响Hopfield神经网络的存储和识别性能,使得网络无法正确地恢复存储的模式或识别输入的模式。设计更合适的非线性激活函数,使网络更容易收敛到正确的稳定状态。
2024-06-24 08:00:00
1442
7
原创 4.1、matlab信号预处理中的中值滤波(medfilt1()函数)和萨维茨基-戈雷滤波滤(sgolayfilt()函数)
matlab信号预处理中的中值滤波(medfilt1()函数)和萨维茨基-戈雷滤波滤(sgolayfilt()函数)
2024-06-23 01:43:41
1571
2
原创 1.10、基于自组织映射神经网络的鸢尾花聚类(matlab)
准备数据:加载鸢尾花数据集,并对数据进行标准化处理。确定神经网络的结构,包括输入层和输出层的神经元数量,以及神经元的初始权重。随机选取一个鸢尾花样本作为输入,并计算该样本与输出层神经元之间的距离,找到距离最近的胜者神经元。根据胜者神经元和其邻近神经元的位置关系,调整神经元的权重。重复步骤 3 和 4 直至达到收敛条件,即神经网络的权重不再发生显著变化。根据训练好的神经网络,将鸢尾花数据样本映射到相应的神经元上,从而得到聚类结果。具体实现中,可以使用 MATLAB 的神经网络工具箱中的selforgmap。
2024-06-23 01:39:06
1147
2
原创 1.9、基于深度学习的(拼音)字符识别(matlab)
收集包含拼音字符的数据集,可以是经过标记的拼音字符图片或者声音数据。对数据集进行预处理,包括图像去噪、裁剪、归一化等处理,或者对声音数据进行特征提取、转换为图像数据等处理。选择适合拼音字符识别任务的深度学习模型,可以选择卷积神经网络(CNN)、循环神经网络(RNN)或者组合模型等。使用数据集对构建好的深度学习模型进行训练,调整模型参数使其能够更好地拟合数据。使用未标记的数据集对训练好的模型进行评估,评估模型的准确率、召回率、F1值等指标。
2024-06-22 12:14:19
1371
11
原创 2.7、matlab矩阵分解汇总:LU矩阵分解、Cholesky分解、QR分解和SVD分解
matlab矩阵分解汇总:LU矩阵分解、Cholesky分解和QR分解
2024-06-20 10:29:02
1922
7
基于卷积神经网络(CNN)的车牌自动识别系统(matlab)
2024-08-14
双目相机标定数据集(左彩色相机右/右红外相机)
2024-05-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅