Given an increasing sequence S of N integers, the median is the number at the middle position. For example, the median of S1 = { 11, 12, 13, 14 } is 12, and the median of S2 = { 9, 10, 15, 16, 17 } is 15. The median of two sequences is defined to be the median of the nondecreasing sequence which contains all the elements of both sequences. For example, the median of S1 and S2 is 13.
Given two increasing sequences of integers, you are asked to find their median.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, each gives the information of a sequence. For each sequence, the first positive integer N (≤2×105) is the size of that sequence. Then N integers follow, separated by a space. It is guaranteed that all the integers are in the range of long int.
Output Specification:
For each test case you should output the median of the two given sequences in a line.
Sample Input:
4 11 12 13 14
5 9 10 15 16 17
Sample Output:
13
#include <bits/stdc++.h>
using namespace std;
long long A[10000000];
int main() {
long long a, b, temp1, temp2;
cin >> a;
for (long long i = 0; i < a; i++) {
cin >> A[i];
}
cin >> b;
for (long long i = a; i < a+b+1; i++) {
cin >> A[i];
}
if ((a+b)%2 == 0){ //如果元素个数为偶数则取第(a+b)/2-1个数为中位数
nth_element(A, A + (a+b) / 2-1, A + a+b);
cout << A[(a+b)/2-1];
}
else{ //如果元素个数为奇数则取第(a+b)/2个数为中位数
nth_element(A, A + (a+b) / 2, A + a+b);
cout << A[(a+b)/2];
}
return 0;
}
在STL里有一个神奇的函数nth_element
用法为:
nth_element(a+x,a+x+y,a+x+len);
执行后数组a下标x到x+y-1的元素都小于a[x+y],下标x+y+1到x+len-1的元素都大于a[x+y],但是不保证数组有序,此时a[x+y]就是数组a区间x到x+len-1中第y小的数。
在这道题里的应用就是把中位数取出来
nth_element的时间复杂度为O(n)
该博客介绍了一种使用STL中的nth_element函数来寻找两个递增序列中位数的方法。程序首先读入两个递增序列,然后通过nth_element找出序列的中位数,当序列元素总数为偶数时取中间较小的数,为奇数时取中间的数。整个过程的时间复杂度为O(n)。
5829

被折叠的 条评论
为什么被折叠?



